40 research outputs found

    Towards a Seamless Future Generation Network for High Speed Wireless Communications

    Get PDF
    YesThe MIMO technology towards achieving future generation broadband networks design criteria is presented. Typical next generation scenarios are investigated. The MIMO technology is integrated with the OFDM technology for effective space, time and frequency diversity exploitations for high speed outdoor environment. Two different OFDM design kernels (fast Fourier transform (FFT) and wavelet packet transform (WPT)) are used at the baseband for OFDM system travelling at terrestrial high speed for 800MHz and 2.6GHz operating frequencies. Results show that the wavelet kernel for designing OFDM systems can withstand doubly selective channel fading for mobiles speeds up to 280Km/hr at the expense of the traditional OFDM design kernel, the fast Fourier transform

    OFDM comparison with FFT and DWT processing for DVB-T2 wireless channels

    Get PDF
    Introduction− Recent studies on the FFT processing (Fast Fourier Transform) or DWT (Discrete Wavelet Transform) of the OFDM signal (Orthogonal Frequency Division Multiplexing) have shown pros and cons for DVB-T2 (Digital Video Broadcasting-Second Generation Terrestrial) radio communications; however, the benefits of both types of processing have yet to be compared for the same scenario. Objective− The objective of this research is to compare the response of the wireless channel with AWGN noise (Additive White Gaussian Noise Channel) and Rayleigh and Rician fading in the UHF (Ultra High Frequency) bandMethodology−The transmission of DVB-T2 information with OFDM modulation and FFT and DWT processing was simulated in Matlab®, specifically in Simulink. Results− The results of the study proved to be more ef-ficient for DWT system than FFT system, due to the low rate of erroneous bits, spectral efficiency and reduction of the Peak-to-Average Power Ratio (PAPR), for Eb / No relations greater than 10dB. Conclusions−In this article, we present the designs of both systems and the results of the research experience; likewise, the practical applicability of these systems is discussed, and improvements are suggested for future work.Introducción− Recientes estudios sobre el procesado FFT (Fast Fourier Transform) o DWT (Discrete Wavelet Transform) de la señal OFDM (Orthogonal Frequency Di-vision Multiplexing) han demostrado pros y contras para comunicaciones de radio DVB-T2 (Digital Video Broad-casting – Second Generation Terrestrial); sin embargo, aún falta comparar las prestaciones de ambos tipos de procesamiento para el mismo escenario. Objetivo− El objetivo de esta investigación es comparar la respuesta del canal inalámbrico con ruido AWGN (Ad-ditive White Gaussian Noise Channel) y desvanecimiento Rayleigh y Rician en la banda de UHF (Ultra High Fre-quency).Metodología− Se simuló en Matlab®, específicamente en Simulink, la transmisión de información DVB-T2 con modulación OFDM y procesado FFT y DWT. Resultados− Los resultados del estudio demostraron ser más eficientes para el sistema DWT en comparación con el Sistema FFT, por la baja tasa de bits errados, eficiencia espectral y reducción del cociente entre la potencia pico a promedio (PAPR: Peak-to-Average Power Ratio), para relaciones Eb/No mayores a 10dB. Conclusiones− En este artículo se presentan los diseños de ambos sistemas y los resultados de la experiencia de investigación; así mismo, se discute la aplicabilidad práctica de estos sistemas y se sugieren mejoras para trabajos futuros

    Comparación OFDM con procesado FFT y DWT para canales inalámbricos DVB-T2

    Get PDF
    Introduction: Recent studies on the FFT processing (Fast Fourier Transform) or DWT (Discrete Wavelet Transform) of the OFDM signal (Orthogonal Frequency Division Multiplexing) have shown pros and cons for DVB-T2 (Digital Video Broadcasting-Second Generation Terrestrial) radio communications; however, the benefits of both types of processing have yet to be compared for the same scenario. Objective: The objective of this research is to compare the response of the wireless channel with AWGN noise (Additive White Gaussian Noise Channel) and Rayleigh and Rician fading in the UHF (Ultra High Frequency) band. Methodology: The transmission of DVB-T2 information with OFDM modulation and FFT and DWT processing was simulated in Matlab®, specifically in Simulink. Results: The results of the study proved to be more efficient for DWT system than FFT system, due to the low rate of erroneous bits, spectral efficiency and reduction of the Peak-to-Average Power Ratio (PAPR), for Eb / No relations greater than 10dB. Conclusions: In this article, we present the designs of both systems and the results of the research experience; likewise, the practical applicability of these systems is discussed, and improvements are suggested for future work.Introducción: Recientes estudios sobre el procesado FFT (Fast Fourier Transform) o DWT (Discrete Wavelet Transform) de la señal OFDM (Orthogonal Frequency Division Multiplexing) han demostrado pros y contras para comunicaciones de radio DVB-T2 (Digital Video Broadcasting – Second Generation Terrestrial); sin embargo, aún falta comparar las prestaciones de ambos tipos de procesamiento para el mismo escenario. Objetivo: El objetivo de esta investigación es comparar la respuesta del canal inalámbrico con ruido AWGN (Additive White Gaussian Noise Channel) y desvanecimiento Rayleigh y Rician en la banda de UHF (Ultra High Frequency). Metodología: Se simuló en Matlab®, específicamente en Simulink, la transmisión de información DVB-T2 con modulación OFDM y procesado FFT y DWT. Resultados: Los resultados del estudio demostraron ser más eficientes para el sistema DWT en comparación con el Sistema FFT, por la baja tasa de bits errados, eficiencia espectral y reducción del cociente entre la potencia pico a promedio (PAPR: Peak-to-Average Power Ratio), para relaciones Eb/No mayores a 10dB. Conclusiones: En este artículo se presentan los diseños de ambos sistemas y los resultados de la experiencia de investigación; así mismo, se discute la aplicabilidad práctica de estos sistemas y se sugieren mejoras para trabajos futuros

    CYCLOSTATIONARY FEATURES BASED LOW COMPLEXITY MUTLIRESOLUTION SPECTRUM SENSING FOR COGNITVE RADIO APPLICATIONS

    Get PDF
    The demand for variety of services using wireless communication has grown remarkably in the past few many years, consequently causing an acute problem of spectrum scarcity. Today, it is one of the most challenging problems in modern wireless communication. To overcome this, the concept of cognitive radio has been proposed and this technology is fast maturing. The first and foremost function a cognitive radio must do is to sense the spectrum as accurately as possible and do it with least complexity. Among many techniques of spectrum sensing, the Multi-resolution Spectrum Sensing (MRSS) is a popular technique in recent literature. Various multi resolution techniques are used that include wavelet based spectrum estimation and spectral hole detection, wavelet based multi-resolution in analog domain and multi-resolution multiple antenna based detection. However, the basic idea is the same - the total bandwidth is sensed using coarse resolution energy detection, then, fine sensing is applied to the portion of interest. None of these techniques, however, use multi-resolution sensing using cyclostationary features for cognitive radio applications which are more reliable but computationally expensive. In this thesis, we suggest a cyclostationary features based low complexity multi-resolution spectrum sensing for cognitive radio applications. The proposed technique discussed in this thesis is inspired by the quickness of multi-resolution and the reliability of cyclostationary feature detection. The performance of the proposed scheme is primarily evaluated by its complexity analysis and by determining the minimum signal-to-noise ratio that gives 90% probability of correct classification. Both subjective and objective evaluation show that the proposed scheme is not only superior to the commonly used energy detection method but also to various multi-resolution sensing techniques as it relies on the robustness of cyclostationary feature detection. The results found are encouraging and the proposed algorithms are proved to be not only fast but also more robust and reliable

    NOVEL OFDM SYSTEM BASED ON DUAL-TREE COMPLEX WAVELET TRANSFORM

    Get PDF
    The demand for higher and higher capacity in wireless networks, such as cellular, mobile and local area network etc, is driving the development of new signaling techniques with improved spectral and power efficiencies. At all stages of a transceiver, from the bandwidth efficiency of the modulation schemes through highly nonlinear power amplifier of the transmitters to the channel sharing between different users, the problems relating to power usage and spectrum are aplenty. In the coming future, orthogonal frequency division multiplexing (OFDM) technology promises to be a ready solution to achieving the high data capacity and better spectral efficiency in wireless communication systems by virtue of its well-known and desirable characteristics. Towards these ends, this dissertation investigates a novel OFDM system based on dual-tree complex wavelet transform (D

    A unified approach to sparse signal processing

    Get PDF
    A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits of significant reduction in sampling rate and processing manipulations through sparse signal processing are revealed. The key application domains of sparse signal processing are sampling, coding, spectral estimation, array processing, compo-nent analysis, and multipath channel estimation. In terms of the sampling process and reconstruction algorithms, linkages are made with random sampling, compressed sensing and rate of innovation. The redundancy introduced by channel coding i

    Novel DWT-DAPSK based transceivers for DVB-T transmission and next generation mobile networks

    Get PDF
    Digital wireless communication has become one of the most exciting research topics in the electronic engineering field due to the explosive demands for high-speed wireless services, such as cellular video conferencing. The second generation Terrestrial Digital Video Broadcasting (DVB- T2) has been demonstrated to provide digital communication services with very high spectral efficiency and significantly improved performance. Orthogonal Frequency Division Multiplexing (OFDM) systems have been increasingly deployed in mobile networks for their spectral efficiency and optimum bit error rate. An OFDM system is a multi-carrier system which transmits signals from a single source at different frequencies simultaneously as parallel components. A distinguishing feature of the OFDM system is its ability to preserve high bandwidth efficiency in high speed data streams. Among the different types of OFDM systems, wavelet based systems have been demonstrated to have much better bandwidth and channel performance compared to the Discrete Fourier transform (DFT) and Discrete Cosine Transform (DCT) based systems. The DFT and DCT systems suffer from several disadvantages including less bandwidth efficiency due 'to the need for guard interval and highly complex system design. Discrete Wavelet transform (DWT) based OFDM systems naturally overcome these disadvantages by their design methodology and the technique of transmitting concentrated energy over small spectral coefficients. Several types of modulation schemes such as DPSK, QAM are employed in OFDM systems, which introduce certain penalties such as increased bandwidth and complexity of the system design. So a multilevel differential modulation technique namely Differential Amplitude and Phase Shift Keying (64 DAPSK) has been proposed as an alternative solution. DAPSK-OFDM is very suitable for high date-rate digital mobile radio channel with additive white Gaussian noise (A WGN). In this research work it has been f demonstrated that a combination of DWT -OFDM with DAPSK modulation can be employed to achieve very low peak-to-average power ratio (PAPR), improved bit error ratio (BER), and much reduced inter symbol interference (ISI) & inter-carrier interference (IeI) in wireless mobile network applications. A mathematical model has been proposed for the DWT-OFDM system with DAPSK modulation scheme in this work. The system performance has been evaluated via simulation using Matlab Simulink package and also verified using Matlab programming. This proposed DWT-OFDM with 64DAPSK hybrid system is demonstrated to have better BER (by an order of magnitude for an SNR of 25dB) performance and improved P APR (by 7.2dB) and interference values. It is also demonstrated that including companding with this system results in further reduction of PAPR. Finally, the simulation results also demonstrate that DWT-DAPSK scheme can be successfully employed in DVTB-T2 systems due to its very high spectral efficiency, much improved BER and significantly reduced PAPR performance

    CYCLOSTATIONARY FEATURES BASED LOW COMPLEXITY MUTLIRESOLUTION SPECTRUM SENSING FOR COGNITVE RADIO APPLICATIONS

    Get PDF
    The demand for variety of services using wireless communication has grown remarkably in the past few many years, consequently causing an acute problem of spectrum scarcity. Today, it is one of the most challenging problems in modern wireless communication. To overcome this, the concept of cognitive radio has been proposed and this technology is fast maturing. The first and foremost function a cognitive radio must do is to sense the spectrum as accurately as possible and do it with least complexity. Among many techniques of spectrum sensing, the Multi-resolution Spectrum Sensing (MRSS) is a popular technique in recent literature. Various multi resolution techniques are used that include wavelet based spectrum estimation and spectral hole detection, wavelet based multi-resolution in analog domain and multi-resolution multiple antenna based detection. However, the basic idea is the same - the total bandwidth is sensed using coarse resolution energy detection, then, fine sensing is applied to the portion of interest. None of these techniques, however, use multi-resolution sensing using cyclostationary features for cognitive radio applications which are more reliable but computationally expensive. In this thesis, we suggest a cyclostationary features based low complexity multi-resolution spectrum sensing for cognitive radio applications. The proposed technique discussed in this thesis is inspired by the quickness of multi-resolution and the reliability of cyclostationary feature detection. The performance of the proposed scheme is primarily evaluated by its complexity analysis and by determining the minimum signal-to-noise ratio that gives 90% probability of correct classification. Both subjective and objective evaluation show that the proposed scheme is not only superior to the commonly used energy detection method but also to various multi-resolution sensing techniques as it relies on the robustness of cyclostationary feature detection. The results found are encouraging and the proposed algorithms are proved to be not only fast but also more robust and reliable
    corecore