2,299,173 research outputs found
Phase-conjugate optical coherence tomography
Quantum optical coherence tomography (Q-OCT) offers a factor-of-two
improvement in axial resolution and the advantage of even-order dispersion
cancellation when it is compared to conventional OCT (C-OCT). These features
have been ascribed to the non-classical nature of the biphoton state employed
in the former, as opposed to the classical state used in the latter.
Phase-conjugate OCT (PC-OCT), introduced here, shows that non-classical light
is not necessary to reap Q-OCT's advantages. PC-OCT uses classical-state signal
and reference beams, which have a phase-sensitive cross-correlation, together
with phase conjugation to achieve the axial resolution and even-order
dispersion cancellation of Q-OCT with a signal-to-noise ratio that can be
comparable to that of C-OCT.Comment: 4 pages, 3 figure
Master slave en-face OCT/SLO
Master Slave optical coherence tomography (MS-OCT) is an OCT method that does not require resampling of data and can be used to deliver en-face images from several depths simultaneously. As the MS-OCT method requires important computational resources, the number of multiple depth en-face images that can be produced in real-time is limited. Here, we demonstrate progress in taking advantage of the parallel processing feature of the MS-OCT technology. Harnessing the capabilities of graphics processing units (GPU)s, information from 384 depth positions is acquired in one raster with real time display of up to 40 en-face OCT images. These exhibit comparable resolution and sensitivity to the images produced using the conventional Fourier domain based method. The GPU facilitates versatile real time selection of parameters, such as the depth positions of the 40 images out of the set of 384 depth locations, as well as their axial resolution. In each updated displayed frame, in parallel with the 40 en-face OCT images, a scanning laser ophthalmoscopy (SLO) lookalike image is presented together with two B-scan OCT images oriented along rectangular directions. The thickness of the SLO lookalike image is dynamically determined by the choice of number of en-face OCT images displayed in the frame and the choice of differential axial distance between them
Multidimensional en-face OCT imaging of the retina.
Fast T-scanning (transverse scanning, en-face) was used to build B-scan or C-scan optical coherence tomography (OCT) images of the retina. Several unique signature patterns of en-face (coronal) are reviewed in conjunction with associated confocal images of the fundus and B-scan OCT images. Benefits in combining T-scan OCT with confocal imaging to generate pairs of OCT and confocal images similar to those generated by scanning laser ophthalmoscopy (SLO) are discussed in comparison with the spectral OCT systems. The multichannel potential of the OCT/SLO system is demonstrated with the addition of a third hardware channel which acquires and generates indocyanine green (ICG) fluorescence images. The OCT, confocal SLO and ICG fluorescence images are simultaneously presented in a two or a three screen format. A fourth channel which displays a live mix of frames of the ICG sequence superimposed on the corresponding coronal OCT slices for immediate multidimensional comparison, is also included. OSA ISP software is employed to illustrate the synergy between the simultaneously provided perspectives. This synergy promotes interpretation of information by enhancing diagnostic comparisons and facilitates internal correction of movement artifacts within C-scan and B-scan OCT images using information provided by the SLO channel
Design and characterization of SiON integrated optics components for optical coherence tomography
Optical coherence tomography (OCT) is a technique for high resolution imaging of biological tissues with a depth range of a few millimeters. OCT is based on interferometry to enable depth ranging. Currently, optical components for OCT are rather bulky and expensive; the use of integrated optical circuits presents a great opportunity to reduce costs and enhance system functionality and performance. We present the design and characterization of SiON-based integrated optics waveguides, splitters, couplers and interferometers for OCT operating at a wavelength of 1.3 um
A model for simulating speckle-pattern evolution based on close to reality procedures used in spectral-domain OCT
A robust model for simulating speckle pattern evolution in optical coherence
tomography (OCT) depending on the OCT system parameters and tissue deformation
is reported. The model is based on application of close to reality procedures
used in spectral-domain OCT scanners. It naturally generates images reproducing
properties of real images in spectral-domain OCT, including the pixelized
structure and finite depth of unambiguous imaging, influence of the optical
spectrum shape, dependence on the optical wave frequency and coherence length,
influence of the tissue straining, etc. Good agreement with generally accepted
speckle features and properties of real OCT images is demonstrated.Comment: 13 pages, 6 figure
Polarization-resolved second-harmonic-generation optical coherence tomography in collagen
We describe a novel imaging technique, second-harmonic-generation optical coherence tomography (SHOCT). This technique combines the spatial resolution and depth penetration of optical coherence tomography (OCT) with the molecular sensitivity of second-harmonic-generation spectroscopy. As a consequence of the coherent detection required for OCT, polarization-resolved images arise naturally. We demonstrate this new technique on a skin sample from the belly of Icelandic salmon, acquiring polarization-resolved SHOCT and OCT images simultaneously
Review of Data Sources for School to Work Transitions by Youth with Disabilities
DE15_PDF1.pdf: 1031 downloads, before Oct. 1, 2020.0-DE15_TXT1.txt: 200 downloads, before Oct. 1, 2020
Structural validation of oral mucosal tissue using optical coherence tomography
Background:
Optical coherence tomography (OCT) is a non-invasive optical technology using near-infrared light to produce cross-sectional tissue images with lateral resolution.
Objectives:
The overall aims of this study was to generate a bank of normative and pathological OCT data of the oral tissues to allow identification of cellular structures of normal and pathological processes with the aim to create a diagnostic algorithm which can be used in the early detection of oral disorders.
Material and methods:
Seventy-three patients with 78 suspicious oral lesions were referred for further management to the UCLH Head and Neck Centre, London. The entire cohort had their lesions surgically biopsied (incisional or excisional). The immediate ex vivo phase involved scanning the specimens using optical coherence tomography. The specimens were then processed by a histopathologist.
Five tissue structures were evaluated as part of this study, including: keratin cell layer, epithelial layer, basement membrane, lamina propria and other microanatomical structures. Two independent assessors (clinician and pathologist trained to use OCT) assessed the OCT images and were asked to comment on the cellular structures and changes involving the five tissue structures in non-blind fashion.
Results:
Correct identification of the keratin cell layer and its structural changes was achieved in 87% of the cohort; for the epithelial layer it reached 93.5%, and 94% for the basement membrane. Microanatomical structures identification was 64% for blood vessels, 58% for salivary gland ducts and 89% for rete pegs. The agreement was “good” between the clinician and the pathologist.
OCT was able to differential normal from pathological tissue and pathological tissue of different entities in this immediate ex vivo study. Unfortunately, OCT provided inadequate cellular and subcellular information to enable the grading of oral premalignant disorders.
Conclusion:
This study enabled the creation of OCT bank of normal and pathological oral tissues. The pathological changes identified using OCT enabled differentiation between normal and pathological tissues, and identification of different tissue pathologies.
Further studies are required to assess the accuracy of OCT in identification of various pathological processes involving the oral tissues
- …
