15,275 research outputs found

    Climates of Warm Earth-like Planets I: 3-D Model Simulations

    Full text link
    We present a large ensemble of simulations of an Earth-like world with increasing insolation and rotation rate. Unlike previous work utilizing idealized aquaplanet configurations we focus our simulations on modern Earth-like topography. The orbital period is the same as modern Earth, but with zero obliquity and eccentricity. The atmosphere is 1 bar N2_{2}-dominated with CO2_{2}=400 ppmv and CH4_{4}=1 ppmv. The simulations include two types of oceans; one without ocean heat transport (OHT) between grid cells as has been commonly used in the exoplanet literature, while the other is a fully coupled dynamic bathtub type ocean. The dynamical regime transitions that occur as day length increases induce climate feedbacks producing cooler temperatures, first via the reduction of water vapor with increasing rotation period despite decreasing shortwave cooling by clouds, and then via decreasing water vapor and increasing shortwave cloud cooling, except at the highest insolations. Simulations without OHT are more sensitive to insolation changes for fast rotations while slower rotations are relatively insensitive to ocean choice. OHT runs with faster rotations tend to be similar with gyres transporting heat poleward making them warmer than those without OHT. For slower rotations OHT is directed equator-ward and no high latitude gyres are apparent. Uncertainties in cloud parameterization preclude a precise determination of habitability but do not affect robust aspects of exoplanet climate sensitivity. This is the first paper in a series that will investigate aspects of habitability in the simulations presented herein. The datasets from this study are opensource and publicly available.Comment: 27 pages ApJS accepted. Expanded Introduction and several additional figure

    Three loop renormalization of the SU(N_c) non-abelian Thirring model

    Get PDF
    We renormalize to three loops a version of the Thirring model where the fermion fields not only lie in the fundamental representation of a non-abelian colour group SU(N_c) but also depend on the number of flavours, N_f. The model is not multiplicatively renormalizable in dimensional regularization due to the generation of evanescent operators which emerge at each loop order. Their effect in the construction of the true wave function, mass and coupling constant renormalization constants is handled by considering the projection technique to a new order. Having constructed the MSbar renormalization group functions we consider other massless independent renormalization schemes to ensure that the renormalization is consistent with the equivalence of the non-abelian Thirring model with other models with a four-fermi interaction. One feature to emerge from the computation is the establishment of the fact that the SU(N_f) Gross Neveu model is not multiplicatively renormalizable in dimensional regularization. An evanescent operator arises first at three loops and we determine its associated renormalization constant explicitly.Comment: 40 latex pages, 14 postscript figure

    Body mass index and health care utilization in diabetic and nondiabetic individuals.

    Get PDF
    BackgroundAlthough controversial, most studies examining the relationship of body mass index (BMI) with mortality in diabetes suggest a paradox: the lowest risk category is above normal weight, versus normal weight in nondiabetic persons. One proposed explanation is greater morbidity of diabetes in normal weight persons. If this were so, it would suggest a health care utilization paradox in diabetes, paralleling the mortality paradox, yet no studies have examined this issue.ObjectiveTo compare the relationship of BMI with health care utilization in diabetic versus nondiabetic persons.DesignPopulation-based cross-sectional study.SubjectsAdults in the 2000-2011 Medical Expenditures Panel Surveys (N=120,389).MeasuresTotal health care expenditures, hospital utilization (≥1 admission), and emergency department utilization (≥1 visit). BMI (kg/m) categories were: <20 (underweight); 20 to <25 (normal); 25 to <30 (overweight); 30 to <35 (obese); and ≥35 (severely obese). Adjustors were age, sex, race/ethnicity, income, health insurance, education, smoking, co-morbidity, urbanicity, region, and year.ResultsAmong diabetic persons, adjusted mean total health care expenditures were significantly lower in obese versus normal weight persons (1314,951314, 95% confidence interval [CI], 513-2115;P=0.001).Bycontrast,amongnondiabeticpersons,totalexpenditureswerenonsignificantlyhigherinobeseversusnormalweightpersons(2115; P=0.001). By contrast, among nondiabetic persons, total expenditures were nonsignificantly higher in obese versus normal weight persons (-229, 95% CI, -460to460 to 2; P=0.052). Findings for hospital and emergency department utilization exhibited similar patterns.ConclusionsNormal weight diabetic persons used substantially more health care than their overweight and obese counterparts, a difference not observed in nondiabetic persons. These differences support the plausibility of a BMI mortality paradox related to greater morbidity of diabetes in normal weight than in heavier persons

    High-resolution NMR structure of an RNA model system : the 14-mer cUUCGg tetraloop hairpin RNA

    Get PDF
    We present a high-resolution nuclear magnetic resonance (NMR) solution structure of a 14-mer RNA hairpin capped by cUUCGg tetraloop. This short and very stable RNA presents an important model system for the study of RNA structure and dynamics using NMR spectroscopy, molecular dynamics (MD) simulations and RNA force-field development. The extraordinary high precision of the structure (root mean square deviation of 0.3 Å) could be achieved by measuring and incorporating all currently accessible NMR parameters, including distances derived from nuclear Overhauser effect (NOE) intensities, torsion-angle dependent homonuclear and heteronuclear scalar coupling constants, projection-angle-dependent cross-correlated relaxation rates and residual dipolar couplings. The structure calculations were performed with the program CNS using the ARIA setup and protocols. The structure quality was further improved by a final refinement in explicit water using OPLS force field parameters for non-bonded interactions and charges. In addition, the 2'-hydroxyl groups have been assigned and their conformation has been analyzed based on NOE contacts. The structure currently defines a benchmark for the precision and accuracy amenable to RNA structure determination by NMR spectroscopy. Here, we discuss the impact of various NMR restraints on structure quality and discuss in detail the dynamics of this system as previously determined

    Five new INTEGRAL unidentified hard X-Ray sources uncovered by Chandra

    Full text link
    The IBIS imager on board INTEGRAL, with a sensitivity better than a mCrab in deep observations and a point source location accuracy of the order of few arcminutes, has localized so far 723 hard X-ray sources in the 17--100 keV energy band, of which a fraction of about 1/3 are still unclassified. The aim of this research is to provide sub-arcsecond localizations of the unidentified sources, necessary to pinpoint the optical and/or infrared counterpart of those objects whose nature is so far unknown. The cross-correlation between the new IBIS sources published within the fourth INTEGRAL/IBIS Survey catalogue and the CHANDRA/ACIS data archive resulted in a sample of 5 not yet identified objects. We present here the results of CHANDRA X-ray Observatory observations of these five hard X-ray sources discovered by the INTEGRAL satellite. We associated IGR J10447-6027 with IR source 2MASSJ10445192-6025115, IGR J16377-6423 with the cluster CIZA J1638.2-6420, IGR J14193-6048 with the pulsar with nebula PSR J1420-6048 and IGR J12562+2554 with the Quasar SDSSJ125610.42+260103.5. We suggest that the counterpart of IGR J12288+0052 may be an AGN/QSO type~2 at a confidence level of 90%.Comment: ApJ accepte

    On examples of difference operators for {0,1}\{0,1\}-valued functions over finite sets

    Full text link
    Recently V.I.Arnold have formulated a geometrical concept of monads and apply it to the study of difference operators on the sets of {0,1}\{0,1\}-valued sequences of length nn. In the present note we show particular examples of these monads and indicate one question arising here

    Four-colour photometry of eclipsing binaries. XL, uvby light curves for the B-type systems DW Carinae, BF Centauri, AC Velorum, and NSV 5783

    Get PDF
    Aims. In order to increase the limited number of B-stars with accurately known dimensions, and also the number of well studied eclipsing binaries in open clusters, we have undertaken observations and studies of four southern double-lined eclipsing B-type binaries; DWCar, BF Cen, ACVel, and NSV 5783. Methods. Complete uvby light curves were observed between January 1982 and April 1991 at the Danish 0.5 m telescope at ESO La Silla, since 1985 known as the Strömgren Automatic Telescope (SAT). Standard indices for the systems and the comparison stars,as well as additional minima observations for ACVel, have been obtained later at SAT. For DWCar and ACVel, high-resolution spectra for definitive spectroscopic orbits have also been obtained; they are presented as part of the detailed analyses of these systems. A few spectra of NSV 5783 are included in the present paper. Results. For all four systems, the first modern accurate light curves have been established. DWCar is a detached system consisting of two nearly identical components. It is member of the young open cluster Cr228. A detailed analysis, based on the new light curves and 29 high-resolution spectra, is published separately. BFCen is semidetached and is member of NGC 3766. Modern spectra are needed for a detailed study. ACVel is a detached system with at least one more star. A full analysis, based on the new light curves and 18 high-resolution spectra, is published separately. NSV 5783 is discovered to be an eclipsing binary consisting of two well-detached components in an 11-day period eccentric (e = 0.18) orbit. Secondary eclipse is practically total. From the light curves and a few high-resolution spectra, accurate photometric elements and preliminary absolute dimensions have been determined. The quite similar components have masses of about 5 M and radii of about 3.5 R, and they seem to have evolved just slightly off the ZAMS. The measured rotational velocities (≈150 km s−1) are about 6 times those corresponding to pseudosynchronization
    corecore