90 research outputs found

    Boundary integral equation methods for the elastic and thermoelastic waves in three dimensions

    Get PDF
    In this paper, we consider the boundary integral equation (BIE) method for solving the exterior Neumann boundary value problems of elastic and thermoelastic waves in three dimensions based on the Fredholm integral equations of the first kind. The innovative contribution of this work lies in the proposal of the new regularized formulations for the hyper-singular boundary integral operators (BIO) associated with the time-harmonic elastic and thermoelastic wave equations. With the help of the new regularized formulations, we only need to compute the integrals with weak singularities at most in the corresponding variational forms of the boundary integral equations. The accuracy of the regularized formulations is demonstrated through numerical examples using the Galerkin boundary element method (BEM).Comment: 24 pages, 6 figure

    Direct and inverse elastic scattering problems for diffraction gratings

    Get PDF
    This paper is concerned with the direct and inverse scattering of time-harmonic plane elastic waves by unbounded periodic structures (diffraction gratings). We present a variational approach to the forward scattering problems with Lipschitz grating profiles and give a survey of recent uniqueness and existence results. We also report on recent global uniqueness results within the class of piecewise linear grating profiles for the corresponding inverse elastic scattering problems. Moreover, a discrete Galerkin method is presented to efficiently approximate solutions of direct scattering problems via an integral equation approach. Finally, an optimization method for solving the inverse problem of recovering a 2D periodic structure from scattered elastic waves measured above the structure is discussed

    Direct and inverse elastic scattering from anisotropic media

    Get PDF
    Assume a time-harmonic elastic wave is incident onto a penetrable anisotropic body embedded into a homogeneous isotropic background medium. We propose an equivalent variational formulation in a truncated bounded domain and show uniqueness and existence of weak solutions by applying the Fredholm alternative and using properties of the Dirichlet-to-Neumann map in both two and three dimensions. The Fréchet derivative of the near-field solution operator with respect to the scattering interface is derived. As an application, we design a descent algorithm for recovering the interface from the near-field data of one or several incident directions and frequencies. Numerical examples in 2D are demonstrated to show the validity and accuracy of our methods

    Direct and inverse elastic scattering from anisotropic media

    Get PDF
    Assume a time-harmonic elastic wave is incident onto a penetrable anisotropic body embedded into a homogeneous isotropic background medium. We propose an equivalent variational formulation in a truncated bounded domain and show uniqueness and existence of weak solutions by applying the Fredholm alternative and using properties of the Dirichlet-to-Neumann map in both two and three dimensions. The Fréchet derivative of the near-field solution operator with respect to the scattering interface is derived. As an application, we design a descent algorithm for recovering the interface from the near-field data of one or several incident directions and frequencies. Numerical examples in 2D are demonstrated to show the validity and accuracy of our methods
    corecore