43 research outputs found

    Mid-term report: Complex Ventilation and Micro-Environmental Control in Livestock Housing

    Get PDF
    Micro-complex ventilation involves integrating precision local ventilations in animal zones. In order to gain knowledge about air motion and temperature distribution in animal occupied zones, the project will investigate an integrated micro ventilation concept in livestock housing. Data will be gathered by using both Computational Fluid Dynamics (CFD) simulations and scale experiments in wind tunnel. After the establishment of the system, optimisations are also needed. Then, to validate the optimal system, varied techniques including local cross ventilation, tunnel ventilation, low pressure ventilation and heat exchange will be investigated. The proposed system combines the advantages of natural, mechanical and displacement ventilation, making it a technology with great efficiency and potential.So far, parts of the experiment about the heated body have already been conducted in the wind tunnel. A CFD simulation about heat convection from chicken have already been finished and written into a manuscript. This report contains introduction of the project of Complex Ventilation and Micro-Environmental Control in Livestock Housing. This report contains activities, courses, and manuscript was presented. There is also a plan for further work

    Modelling and reducing gas emissions from naturally ventilated livestock buildings

    Get PDF
    Livestock buildings are identified to be a major source of ammonia emissions. About 30% of the total ammonia emission within livestock sectors is from naturally ventilated dairy cattle buildings. The main objectives of this study are to predict emissions from naturally ventilated dairy cattle buildings and to establish a systematic approach to curtail the emissions.Gas concentrations were measured inside two dairy cattle buildings in mid-Jutland, Denmark. CO2 balance method was thus applied to estimate ventilation and emission rates. Computational fluid dynamics (CFD) was used to find the optimum gas sampling positions for outlet CO2 concentration. The gas sampling positions should be located adjacent to the openings or even in the openings. The NH3 emission rates varied from 32 to77 g HPU-1 d-1 in building 1 and varied from 18 to30 g HPU-1 d-1 in building 2.Scale model experiment showed that partial pit ventilation was able to remove a large portion of polluted gases under the slatted floor. In the full scale simulations, a pit exhaust with a capacity of 37.3 m3 h-1 HPU-1 may reduce ammonia emission only by 3.16% compared with the case without pit ventilation. When the external wind was decreased to 1.4 m s-1 and the sidewall opening area were reduced to half, such a pit ventilation capacity can reduce ammonia emission by 85.2%. The utilization of pit ventilation system must be integrated with the control of the natural ventilation rates of the building

    Housing Environment and Farm Animals' Well-Being

    Get PDF
    This reprint contains articles from the Special Issue of Animals “Housing Environment and Farm Animals' Well-Being”, including original research, review, and communication related to livestock and poultry environmental management, air quality control, emissions mitigation, and assessment of animal health and well-being

    Experimental and model-based study of airflows and ammonia distributions in and around animal houses

    Get PDF

    Measurement of methane emissions from confined sources using the inverse dispersion method

    Get PDF
    Greenhouse gas (GHG) emissions are reported in annual national inventories. Globally, the main anthropogenic sources of methane (CH4) are fossil fuel burning, agriculture, landfills, and waste management. The main source of CH4 from agriculture is enteric fermentation in the digestive tract of ruminants and a minor source are emissions from manure management. In 2019, the Swiss Federal council decided that Switzerland must reduce its GHG emission to net-zero until 2050. To reach this goal, the agricultural sector is obliged to contribute to the emission reduction. However, emissions from the agriculture and waste sector imply large uncertainties as, among other reasons, the availability of data based on real-world studies is limited. Several investigations showed that measurements from laboratory- or pilot-scale experiments do often not comply with real-world conditions. For studies under real-world conditions, different measurement approaches are available. One of the most promising methods is the inverse dispersion method (IDM) that was applied in this thesis to measure CH 4 emissions from livestock production and the waste management sector in order to evaluate the method for complex source configurations and to specify emission factors of these sources. For the IDM, a backward Lagrangian stochastic (bLS) model in combination with concentration measurements up- and downwind of the source using open-path tunable diode laser spectrometers (GasFinders) were employed. GasFinders are simple to use, flexible in their application, and relatively cost-effective measuring devices. However, several challenges were faced and overcome throughout the thesis. The precision of the employed GasFinder model was about 10 times lower than the manufacturer stated, which necessitated adaptation in the measurement setup. Additionally, an intercomparison before or after each measurement campaign was necessary to correct the offset and span between the employed GasFinders. In the first two studies presented in this thesis, experiments were conducted to evaluate the IDM. In a third study, experiments were conducted to assess the handling of complex source configurations with the IDM. The emissions determined in the third study were used as a basis for emission factors of Swiss biogas plants (BGPs) and wastewater treatment plants (WWTPs). In the first study, a known and predefined amount of CH 4 was released by an artificial source in a barn that mimics a dairy housing. For concentration measurements, GasFinders with a path length ii Thesis summary of 110 m were placed in downwind direction of the barn at a distance of 50 m, 100 m, 150 m, and 200 m. At the first three distances, an ultrasonic anemometer was placed in the middle of the GasFinder path length for executing turbulence measurements. Upwind of the barn, an additional GasFinder and an ultrasonic anemometer were installed. The main objective was to test the ideal measurement fetch for the IDM. The results of this experiment are included in the method section, where the conditions and the setup of an IDM measurement campaign are outlined. A release rate of 140 norm litres min -1 was chosen to achieve sufficient concentration enhancement at the GasFinder locations. The mean recovery rates of the experiment were between 0.55 – 0.76. In the second study, CH4 emission measurements from a naturally ventilated dairy housing were conducted in two measurement campaigns. During part of the campaign duration, emissions were also measured inside the housing with the inhouse tracer ratio method (iTRM). This allowed comparing the IDM with the iTRM, which was considered as a reference method for naturally ventilated livestock housings. For simultaneous emission intervals, the average IDM emissions were lower by 1 % and 8 % compared to the iTRM measurements, which was within the uncertainty of either of the two methods. Additionally, an uncertainty analysis for the IDM showed that measurement campaigns of at least 10 consecutive days are necessary to acquire reliable emission data. The third study addressed the handling of complex source configurations with the IDM. Emissions from four agricultural BGPs and two WWTPs in Switzerland were measured. The average BGP CH 4 emission varied between 0.39 kg h -1 and 2.22 kg h-1, which was less than 5 % of the plant’s CH4 production. The average CH4 emissions for the two WWTPs were 166 g population-equivalent-1 y -1 and 381 g population-equivalent-1 y -1, respectively. The BGPs often had livestock housings nearby that needed to be discriminated from the plant emission. It was demonstrated how the plant emission can be corrected for the nearby CH4 sources, which confounded the GasFinder measurements. Further, it was demonstrated how to combine multiple GasFinder measurements to a single line concentration for the bLS modelling. WWTPs are complex sources as they consist of multiple sub-sources with different emission strengths spread over a large area. Three different calculation approaches with different degree of details are presented for the combination of the individual sources in the bLS modelling: (i) A polygon over the entire WWTP area as a single source. (ii) All potential sources within the WWTP have a uniform emission density. (iii) Based on literature data, relative weighting of the individual sources is carried out. The maximum difference in emission between the most complex approach (iii) and the simplest approach (i) was 42 %. It could be shown that for large source areas (> 10,000 m2), approach (iii) is the preferred option, whereas for the measured BGPs the simple polygon approach (i) was sufficient. The recovery rate of the IDM from the release experiment (study 1) was below 1 and somewhat lower than previous studies with a similar experimental setting have shown. I was not able to conclusively identify the reasons for this result, which contrasts with the outcome of study 2 at the naturally ventilated dairy housing with a high consistency between the IDM and the iTRM used as a reference. Therefore, I suggest repeating the release experiment with an adapted setting and additionally roughly mapping the emission plume by a drone or a high-precision handheld sensor to monitor the dispersion of the plume. The field measurements at the WWTPs and the BGPs based on iii the chosen approach of source combination yielded data that are in the expected range according to current state of knowledge. The presented PhD thesis supports the aptitude of the IDM to measure emissions from complex sources like farms, BGPs, or WWTPs. Such measurements contribute to increasing the accuracy of national GHG inventories. Nevertheless, I suggest further investigations to better assess the accuracy of the IDM under complex conditions

    Farm Animal Transport

    Get PDF
    Most of the 70 billion animals that are farmed in the world are transported at least once in their lives. For improved animal welfare, sustainability, and profitability it is important that everyone involved in the transportation process takes responsibility for doing a good job. This may require legislation and assurance schemes backed up by inspections and driven by consumer awareness and demand. All aspects of the transportation process, including preparation for transport, handling during loading and unloading, handler and driver training, stocking density on the transport container, journey length, and weather have an effect on animal welfare, meat quality, health after transport, and even mortality during transit. These topics are covered in the papers and reviews in this book together with related aspects such as consumer perceptions of animal transport, cleaning of transport coops, and consideration of on-farm slaughter to obviate the need for transport to an abattoir. The book adds to the knowledge of farm animal transport and highlights areas for future research and improved practice

    Rural structures in the tropics: Design and development

    Get PDF
    There is a growing awareness of the need for better rural structures and services in many developing countries. Here the FAO presents an up-to-date, comprehensive text focusing on structures for small- to medium-scale farms and, to some extent, village-scale agricultural infrastructure. The book will help to improve teaching on the subject of rural buildings in the tropics and will assist professionals engaged in providing technical advice. Importantly, it also provides guidance in the context of disaster recovery and rehabilitation, for rebuilding the sound rural structures and related services that are key to development and economic sustainability
    corecore