145 research outputs found

    Mean Field Limits for Interacting Diffusions in a Two-Scale Potential

    Get PDF
    In this paper we study the combined mean field and homogenization limits for a system of weakly interacting diffusions moving in a two-scale, locally periodic confining potential, of the form considered in~\cite{DuncanPavliotis2016}. We show that, although the mean field and homogenization limits commute for finite times, they do not, in general, commute in the long time limit. In particular, the bifurcation diagrams for the stationary states can be different depending on the order with which we take the two limits. Furthermore, we construct the bifurcation diagram for the stationary McKean-Vlasov equation in a two-scale potential, before passing to the homogenization limit, and we analyze the effect of the multiple local minima in the confining potential on the number and the stability of stationary solutions

    Dynamics of the Desai-Zwanzig model in multiwell and random energy landscapes

    Get PDF
    We analyze a variant of the Desai-Zwanzig model [J. Stat. Phys. {\bf 19}1-24 (1978)]. In particular, we study stationary states of the mean field limit for a system of weakly interacting diffusions moving in a multi-well potential energy landscape, coupled via a Curie-Weiss type (quadratic) interaction potential. The location and depth of the local minima of the potential are either deterministic or random. We characterize the structure and nature of bifurcations and phase transitions for this system, by means of extensive numerical simulations and of analytical calculations for an explicitly solvable model. Our numerical experiments are based on Monte Carlo simulations, the numerical solution of the time-dependent nonlinear Fokker-Planck (McKean-Vlasov equation), the minimization of the free energy functional and a continuation algorithm for the stationary solutions

    Rectified deep neural networks overcome the curse of dimensionality for nonsmooth value functions in zero-sum games of nonlinear stiff systems

    Full text link
    In this paper, we establish that for a wide class of controlled stochastic differential equations (SDEs) with stiff coefficients, the value functions of corresponding zero-sum games can be represented by a deep artificial neural network (DNN), whose complexity grows at most polynomially in both the dimension of the state equation and the reciprocal of the required accuracy. Such nonlinear stiff systems may arise, for example, from Galerkin approximations of controlled stochastic partial differential equations (SPDEs), or controlled PDEs with uncertain initial conditions and source terms. This implies that DNNs can break the curse of dimensionality in numerical approximations and optimal control of PDEs and SPDEs. The main ingredient of our proof is to construct a suitable discrete-time system to effectively approximate the evolution of the underlying stochastic dynamics. Similar ideas can also be applied to obtain expression rates of DNNs for value functions induced by stiff systems with regime switching coefficients and driven by general L\'{e}vy noise.Comment: This revised version has been accepted for publication in Analysis and Application
    • …
    corecore