2,203,317 research outputs found

    Numerical Methods for Quasicrystals

    Full text link
    Quasicrystals are one kind of space-filling structures. The traditional crystalline approximant method utilizes periodic structures to approximate quasicrystals. The errors of this approach come from two parts: the numerical discretization, and the approximate error of Simultaneous Diophantine Approximation which also determines the size of the domain necessary for accurate solution. As the approximate error decreases, the computational complexity grows rapidly, and moreover, the approximate error always exits unless the computational region is the full space. In this work we focus on the development of numerical method to compute quasicrystals with high accuracy. With the help of higher-dimensional reciprocal space, a new projection method is developed to compute quasicrystals. The approach enables us to calculate quasicrystals rather than crystalline approximants. Compared with the crystalline approximant method, the projection method overcomes the restrictions of the Simultaneous Diophantine Approximation, and can also use periodic boundary conditions conveniently. Meanwhile, the proposed method efficiently reduces the computational complexity through implementing in a unit cell and using pseudospectral method. For illustrative purpose we work with the Lifshitz-Petrich model, though our present algorithm will apply to more general systems including quasicrystals. We find that the projection method can maintain the rotational symmetry accurately. More significantly, the algorithm can calculate the free energy density to high precision.Comment: 27 pages, 8 figures, 6 table

    Numerical Stability of Lanczos Methods

    Get PDF
    The Lanczos algorithm for matrix tridiagonalisation suffers from strong numerical instability in finite precision arithmetic when applied to evaluate matrix eigenvalues. The mechanism by which this instability arises is well documented in the literature. A recent application of the Lanczos algorithm proposed by Bai, Fahey and Golub allows quadrature evaluation of inner products of the form ψg(A)ψ\psi^\dagger g(A) \psi. We show that this quadrature evaluation is numerically stable and explain how the numerical errors which are such a fundamental element of the finite precision Lanczos tridiagonalisation procedure are automatically and exactly compensated in the Bai, Fahey and Golub algorithm. In the process, we shed new light on the mechanism by which roundoff error corrupts the Lanczos procedureComment: 3 pages, Lattice 99 contributio

    Numerical Methods for Stochastic Differential Equations

    Full text link
    Stochastic differential equations (sdes) play an important role in physics but existing numerical methods for solving such equations are of low accuracy and poor stability. A general strategy for developing accurate and efficient schemes for solving stochastic equations in outlined here. High order numerical methods are developed for integration of stochastic differential equations with strong solutions. We demonstrate the accuracy of the resulting integration schemes by computing the errors in approximate solutions for sdes which have known exact solutions

    Hysteresis, Avalanches, and Noise: Numerical Methods

    Full text link
    In studying the avalanches and noise in a model of hysteresis loops we have developed two relatively straightforward algorithms which have allowed us to study large systems efficiently. Our model is the random-field Ising model at zero temperature, with deterministic albeit random dynamics. The first algorithm, implemented using sorted lists, scales in computer time as O(N log N), and asymptotically uses N (sizeof(double)+ sizeof(int)) bits of memory. The second algorithm, which never generates the random fields, scales in time as O(N \log N) and asymptotically needs storage of only one bit per spin, about 96 times less memory than the first algorithm. We present results for system sizes of up to a billion spins, which can be run on a workstation with 128MB of RAM in a few hours. We also show that important physical questions were resolved only with the largest of these simulations

    Numerical methods for computing Casimir interactions

    Full text link
    We review several different approaches for computing Casimir forces and related fluctuation-induced interactions between bodies of arbitrary shapes and materials. The relationships between this problem and well known computational techniques from classical electromagnetism are emphasized. We also review the basic principles of standard computational methods, categorizing them according to three criteria---choice of problem, basis, and solution technique---that can be used to classify proposals for the Casimir problem as well. In this way, mature classical methods can be exploited to model Casimir physics, with a few important modifications.Comment: 46 pages, 142 references, 5 figures. To appear in upcoming Lecture Notes in Physics book on Casimir Physic
    corecore