490 research outputs found

    High-order Compact Difference Schemes for the Modified Anomalous Subdiffusion Equation

    Full text link
    In this paper, two kinds of high-order compact finite difference schemes for second-order derivative are developed. Then a second-order numerical scheme for Riemann-Liouvile derivative is established based on fractional center difference operator. We apply these methods to fractional anomalous subdiffusion equation to construct two kinds of novel numerical schemes. The solvability, stability and convergence analysis of these difference schemes are studied by Fourier method in details. The convergence orders of these numerical schemes are O(τ2+h6)\mathcal {O}(\tau^2+h^6) and O(τ2+h8)\mathcal {O}(\tau^2+h^8), respectively. Finally, numerical experiments are displayed which are in line with the theoretical analysis.Comment:

    Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview

    Get PDF
    Over the past few decades, there has been substantial interest in evolution equations that involving a fractional-order derivative of order α(0,1)\alpha\in(0,1) in time, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following aspects of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space-time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature.Comment: 24 pages, 3 figure

    Correction of high-order BDF convolution quadrature for fractional evolution equations

    Get PDF
    We develop proper correction formulas at the starting k1k-1 steps to restore the desired kthk^{\rm th}-order convergence rate of the kk-step BDF convolution quadrature for discretizing evolution equations involving a fractional-order derivative in time. The desired kthk^{\rm th}-order convergence rate can be achieved even if the source term is not compatible with the initial data, which is allowed to be nonsmooth. We provide complete error estimates for the subdiffusion case α(0,1)\alpha\in (0,1), and sketch the proof for the diffusion-wave case α(1,2)\alpha\in(1,2). Extensive numerical examples are provided to illustrate the effectiveness of the proposed scheme.Comment: 22 pages, 3 figure
    corecore