5 research outputs found

    Physics-guided deep-learning inversion method for the interpretation of noisy logging-while-drilling resistivity measurements

    Get PDF
    Deep learning (DL) inversion is a promising method for real-Time interpretation of logging-while-drilling (LWD) resistivity measurements for well-navigation applications. In this context, measurement noise may significantly affect inversion results. Existing publications examining the effects of measurement noise on DL inversion results are scarce. We develop a method to generate training data sets and construct DL architectures that enhance the robustness of DL inversion methods in the presence of noisy LWD resistivity measurements. We use two synthetic resistivity models to test the three approaches that explicitly consider the presence of noise: (1) adding noise to the measurements in the training set, (2) augmenting the training set by replicating it and adding varying noise realizations and (3) adding a noise layer in the DL architecture. Numerical results confirm that each of the three approaches enhances the noise-robustness of the trained DL inversion modules, yielding better inversion results-in both the predicted earth model and measurements-compared to the basic DL inversion and also to traditional gradient-based inversion results. A combination of the second and third approaches delivers the best results

    Finite Element Time-Domain Body-of-Revolution Maxwell Solver based on Discrete Exterior Calculus

    Full text link
    We present a finite-element time-domain (FETD) Maxwell solver for the analysis of body-of-revolution (BOR) geometries based on discrete exterior calculus (DEC) of differential forms and transformation optics (TO) concepts. We explore TO principles to map the original 3-D BOR problem to a 2-D one in the meridian plane based on a Cartesian coordinate system where the cylindrical metric is fully embedded into the constitutive properties of an effective inhomogeneous and anisotropic medium that fills the domain. The proposed solver uses a TE/TM field decomposition and an appropriate set of DEC-based basis functions on an irregular grid discretizing the meridian plane. A symplectic time discretization based on a leap-frog scheme is applied to obtain the full-discrete marching-on-time algorithm. We validate the algorithm by comparing the numerical results against analytical solutions for resonant fields in cylindrical cavities and against pseudo-analytical solutions for fields radiated by cylindrically symmetric antennas in layered media. We also illustrate the application of the algorithm for a particle-in-cell (PIC) simulation of beam-wave interactions inside a high-power backward-wave oscillator.Comment: 42 pages, 19 figure
    corecore