72 research outputs found

    Multivariate type G Mat\'ern stochastic partial differential equation random fields

    Full text link
    For many applications with multivariate data, random field models capturing departures from Gaussianity within realisations are appropriate. For this reason, we formulate a new class of multivariate non-Gaussian models based on systems of stochastic partial differential equations with additive type G noise whose marginal covariance functions are of Mat\'ern type. We consider four increasingly flexible constructions of the noise, where the first two are similar to existing copula-based models. In contrast to these, the latter two constructions can model non-Gaussian spatial data without replicates. Computationally efficient methods for likelihood-based parameter estimation and probabilistic prediction are proposed, and the flexibility of the suggested models is illustrated by numerical examples and two statistical applications

    A Particle Filter for Stochastic Advection by Lie Transport (SALT): A case study for the damped and forced incompressible 2D Euler equation

    Get PDF
    In this work, we apply a particle filter with three additional procedures (model reduction, tempering and jittering) to a damped and forced incompressible 2D Euler dynamics defined on a simply connected bounded domain. We show that using the combined algorithm, we are able to successfully assimilate data from a reference system state (the ``truth") modelled by a highly resolved numerical solution of the flow that has roughly 3.1×1063.1\times10^6 degrees of freedom for 1010 eddy turnover times, using modest computational hardware. The model reduction is performed through the introduction of a stochastic advection by Lie transport (SALT) model as the signal on a coarser resolution. The SALT approach was introduced as a general theory using a geometric mechanics framework from Holm, Proc. Roy. Soc. A (2015). This work follows on the numerical implementation for SALT presented by Cotter et al, SIAM Multiscale Model. Sim. (2019) for the flow in consideration. The model reduction is substantial: The reduced SALT model has 4.9×1044.9\times 10^4 degrees of freedom. Forecast reliability and estimated asymptotic behaviour of the particle filter are also presented

    A Review of Recent Developments in the Numerical Solution of Stochastic Partial Differential Equations (Stochastic Finite Elements)

    Get PDF
    The present review discusses recent developments in numerical techniques for the solution of systems with stochastic uncertainties. Such systems are modelled by stochastic partial differential equations (SPDEs), and techniques for their discretisation by stochastic finite elements (SFEM) are reviewed. Also, short overviews of related fields are given, e.g. of mathematical properties of random fields and SPDEs and of techniques for high-dimensional integration. After a summary of aspects of stochastic analysis, models and representations of random variables are presented. Then mathematical theories for SPDEs with stochastic operator are reviewed. Discretisation-techniques for random fields and for SPDEs are summarised and solvers for the resulting discretisations are reviewed, where the main focus lies on series expansions in the stochastic dimensions with an emphasis on Galerkin-schemes
    • …
    corecore