1,886,080 research outputs found

    Block-Sparse Recovery via Convex Optimization

    Full text link
    Given a dictionary that consists of multiple blocks and a signal that lives in the range space of only a few blocks, we study the problem of finding a block-sparse representation of the signal, i.e., a representation that uses the minimum number of blocks. Motivated by signal/image processing and computer vision applications, such as face recognition, we consider the block-sparse recovery problem in the case where the number of atoms in each block is arbitrary, possibly much larger than the dimension of the underlying subspace. To find a block-sparse representation of a signal, we propose two classes of non-convex optimization programs, which aim to minimize the number of nonzero coefficient blocks and the number of nonzero reconstructed vectors from the blocks, respectively. Since both classes of problems are NP-hard, we propose convex relaxations and derive conditions under which each class of the convex programs is equivalent to the original non-convex formulation. Our conditions depend on the notions of mutual and cumulative subspace coherence of a dictionary, which are natural generalizations of existing notions of mutual and cumulative coherence. We evaluate the performance of the proposed convex programs through simulations as well as real experiments on face recognition. We show that treating the face recognition problem as a block-sparse recovery problem improves the state-of-the-art results by 10% with only 25% of the training data.Comment: IEEE Transactions on Signal Processin

    Higher-point conformal blocks and entanglement entropy in heavy states

    Full text link
    We consider conformal blocks of two heavy operators and an arbitrary number of light operators in a (1+1)-d CFT with large central charge. Using the monodromy method, these higher-point conformal blocks are shown to factorize into products of 4-point conformal blocks in the heavy-light limit for a class of OPE channels. This result is reproduced by considering suitable worldline configurations in the bulk conical defect geometry. We apply the CFT results to calculate the entanglement entropy of an arbitrary number of disjoint intervals for heavy states. The corresponding holographic entanglement entropy calculated via the minimal area prescription precisely matches these results from CFT. Along the way, we briefly illustrate the relation of these conformal blocks to Riemann surfaces and their associated moduli space.Comment: 41 pages, 10 figures. (Published version; typos corrected and references added.

    Estimating the number of change-points in a two-dimensional segmentation model without penalization

    Full text link
    In computational biology, numerous recent studies have been dedicated to the analysis of the chromatin structure within the cell by two-dimensional segmentation methods. Motivated by this application, we consider the problem of retrieving the diagonal blocks in a matrix of observations. The theoretical properties of the least-squares estimators of both the boundaries and the number of blocks proposed by L\'evy-Leduc et al. [2014] are investigated. More precisely, the contribution of the paper is to establish the consistency of these estimators. A surprising consequence of our results is that, contrary to the onedimensional case, a penalty is not needed for retrieving the true number of diagonal blocks. Finally, the results are illustrated on synthetic data.Comment: 30 pages, 8 figure
    corecore