31,084 research outputs found
An efficient null space inexact Newton method for hydraulic simulation of water distribution networks
Null space Newton algorithms are efficient in solving the nonlinear equations
arising in hydraulic analysis of water distribution networks. In this article,
we propose and evaluate an inexact Newton method that relies on partial updates
of the network pipes' frictional headloss computations to solve the linear
systems more efficiently and with numerical reliability. The update set
parameters are studied to propose appropriate values. Different null space
basis generation schemes are analysed to choose methods for sparse and
well-conditioned null space bases resulting in a smaller update set. The Newton
steps are computed in the null space by solving sparse, symmetric positive
definite systems with sparse Cholesky factorizations. By using the constant
structure of the null space system matrices, a single symbolic factorization in
the Cholesky decomposition is used multiple times, reducing the computational
cost of linear solves. The algorithms and analyses are validated using medium
to large-scale water network models.Comment: 15 pages, 9 figures, Preprint extension of Abraham and Stoianov, 2015
(https://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001089), September 2015.
Includes extended exposition, additional case studies and new simulations and
analysi
Stable low-rank matrix recovery via null space properties
The problem of recovering a matrix of low rank from an incomplete and
possibly noisy set of linear measurements arises in a number of areas. In order
to derive rigorous recovery results, the measurement map is usually modeled
probabilistically. We derive sufficient conditions on the minimal amount of
measurements ensuring recovery via convex optimization. We establish our
results via certain properties of the null space of the measurement map. In the
setting where the measurements are realized as Frobenius inner products with
independent standard Gaussian random matrices we show that
measurements are enough to uniformly and stably recover an
matrix of rank at most . We then significantly generalize this result by
only requiring independent mean-zero, variance one entries with four finite
moments at the cost of replacing by some universal constant. We also study
the case of recovering Hermitian rank- matrices from measurement matrices
proportional to rank-one projectors. For rank-one projective
measurements onto independent standard Gaussian vectors, we show that nuclear
norm minimization uniformly and stably reconstructs Hermitian rank- matrices
with high probability. Next, we partially de-randomize this by establishing an
analogous statement for projectors onto independent elements of a complex
projective 4-designs at the cost of a slightly higher sampling rate . Moreover, if the Hermitian matrix to be recovered is known to be
positive semidefinite, then we show that the nuclear norm minimization approach
may be replaced by minimizing the -norm of the residual subject to the
positive semidefinite constraint. Then no estimate of the noise level is
required a priori. We discuss applications in quantum physics and the phase
retrieval problem.Comment: 26 page
- …
