18,626 research outputs found
Non-Empirically Tuned Range-Separated DFT Accurately Predicts Both Fundamental and Excitation Gaps in DNA and RNA Nucleobases
Using a non-empirically tuned range-separated DFT approach, we study both the
quasiparticle properties (HOMO-LUMO fundamental gaps) and excitation energies
of DNA and RNA nucleobases (adenine, thymine, cytosine, guanine, and uracil).
Our calculations demonstrate that a physically-motivated, first-principles
tuned DFT approach accurately reproduces results from both experimental
benchmarks and more computationally intensive techniques such as many-body GW
theory. Furthermore, in the same set of nucleobases, we show that the
non-empirical range-separated procedure also leads to significantly improved
results for excitation energies compared to conventional DFT methods. The
present results emphasize the importance of a non-empirically tuned
range-separation approach for accurately predicting both fundamental and
excitation gaps in DNA and RNA nucleobases.Comment: Accepted by the Journal of Chemical Theory and Computatio
Nitrogen doping of carbon nanoelectrodes for enhanced control of DNA translocation dynamics
Controlling the dynamics of DNA translocation is a central issue in the
emerging nanopore-based DNA sequencing. To address the potential of heteroatom
doping of carbon nanostructures to achieve this goal, herein we carry out
atomistic molecular dynamics simulations for single-stranded DNAs translocating
between two pristine or doped carbon nanotube (CNT) electrodes. Specifically,
we consider the substitutional nitrogen doping of capped CNT (capCNT)
electrodes and perform two types of molecular dynamics simulations for the
entrapped and translocating single-stranded DNAs. We find that the
substitutional nitrogen doping of capCNTs stabilizes the edge-on nucleobase
configurations rather than the original face-on ones and slows down the DNA
translocation speed by establishing hydrogen bonds between the N dopant atoms
and nucleobases. Due to the enhanced interactions between DNAs and N-doped
capCNTs, the duration time of nucleobases within the nanogap was extended by up
to ~ 290 % and the fluctuation of the nucleobases was reduced by up to ~ 70 %.
Given the possibility to be combined with extrinsic light or gate voltage
modulation methods, the current work demonstrates that the substitutional
nitrogen doping is a promising direction for the control of DNA translocation
dynamics through a nanopore or nanogap based of carbon nanomaterials.Comment: 11 pages, 4 figure
Physisorption of Nucleobases on Graphene
We report the results of our first-principles investigation on the
interaction of the nucleobases adenine (A), cytosine (C), guanine (G), thymine
(T), and uracil (U) with graphene, carried out within the density functional
theory framework, with additional calculations utilizing Hartree--Fock plus
second-order Moeller-Plesset perturbation theory. The calculated binding energy
of the nucleobases shows the following hierarchy: G > T ~ C ~ A > U, with the
equilibrium configuration being very similar for all five of them. Our results
clearly demonstrate that the nucleobases exhibit significantly different
interaction strengths when physisorbed on graphene. The stabilizing factor in
the interaction between the base molecule and graphene sheet is dominated by
the molecular polarizability that allows a weakly attractive dispersion force
to be induced between them. The present study represents a significant step
towards a first-principles understanding of how the base sequence of DNA can
affect its interaction with carbon nanotubes, as observed experimentally.Comment: 7 pages, 3 figure
First-principles GW calculations for DNA and RNA nucleobases
On the basis of first-principles GW calculations, we study the quasiparticle
properties of the guanine, adenine, cytosine, thymine, and uracil DNA and RNA
nucleobases. Beyond standard G0W0 calculations, starting from Kohn-Sham
eigenstates obtained with (semi)local functionals, a simple self-consistency on
the eigenvalues allows to obtain vertical ionization energies and electron
affinities within an average 0.11 eV and 0.18 eV error respectively as compared
to state-of-the-art coupled-cluster and multi-configurational perturbative
quantum chemistry approaches. Further, GW calculations predict the correct \pi
-character of the highest occupied state, thanks to several level crossings
between density functional and GW calculations. Our study is based on a recent
gaussian-basis implementation of GW with explicit treatment of dynamical
screening through contour deformation techniques.Comment: 5 pages, 3 figure
Recent advances in experimental techniques to probe fast excited-state dynamics in biological molecules in the gas phase : dynamics in nucleotides, amino acids and beyond
In many chemical reactions, an activation barrier must be overcome before a chemical transformation can occur. As such, understanding the behaviour of molecules in energetically excited states is critical to understanding the chemical changes that these molecules undergo. Among the most prominent reactions for mankind to understand are chemical changes that occur in our own biological molecules. A notable example is the focus towards understanding the interaction of DNA with ultraviolet radiation and the subsequent chemical changes. However, the interaction of radiation with large biological structures is highly complex, and thus the photochemistry of these systems as a whole is poorly understood. Studying the gas-phase spectroscopy and ultrafast dynamics of the building blocks of these more complex biomolecules offers the tantalizing prospect of providing a scientifically intuitive bottom-up approach, beginning with the study of the subunits of large polymeric biomolecules and monitoring the evolution in photochemistry as the complexity of the molecules is increased. While highly attractive, one of the main challenges of this approach is in transferring large, and in many cases, thermally labile molecules into vacuum. This review discusses the recent advances in cutting-edge experimental methodologies, emerging as excellent candidates for progressing this bottom-up approach
Dual-tip-enhanced ultrafast CARS nanoscopy
Coherent anti-Stokes Raman scattering (CARS) and, in particular, femtosecond
adaptive spectroscopic techniques (FAST CARS) have been successfully used for
molecular spectroscopy and microscopic imaging. Recent progress in ultrafast
nanooptics provides flexibility in generation and control of optical near
fields, and holds promise to extend CARS techniques to the nanoscale. In this
theoretical study, we demonstrate ultrafast subwavelentgh control of coherent
Raman spectra of molecules in the vicinity of a plasmonic nanostructure excited
by ultrashort laser pulses. The simulated nanostructure design provides
localized excitation sources for CARS by focusing incident laser pulses into
subwavelength hot spots via two self-similar nanolens antennas connected by a
waveguide. Hot-spot-selective dual-tip-enhanced CARS (2TECARS) nanospectra of
DNA nucleobases are obtained by simulating optimized pump, Stokes and probe
near fields using tips, laser polarization- and pulse-shaping. This technique
may be used to explore ultrafast energy and electron transfer dynamics in real
space with nanometre resolution and to develop novel approaches to DNA
sequencing.Comment: 11 pages, 6 figure
- …
