1,577,382 research outputs found

    Theoretical Aspects of Science with Radioactive Nuclear Beams

    Get PDF
    Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.Comment: 26 ReVTeX pages, 11 Postscript figures, uses epsf.sty, to be published in: Theme Issue on Science with Beams of Radioactive Nuclei, Philosophical Transactions, ed. by W. Gelletl

    Tests of the Gravitational Inverse-Square Law

    Full text link
    We review recent experimental tests of the gravitational inverse-square law and the wide variety of theoretical considerations that suggest the law may break down in experimentally accessible regions.Comment: 81 pages, 10 figures, submitted by permission of the Annual Review of Nuclear and Particle Science. Final version of this material is scheduled to appear in the Annual Review of Nuclear and Particle Science Vol. 53, to be published in December 2003 by Annual Reviews, http://AnnualReviews.or

    Evolution of Earth-Lunar Transportation Systems

    Get PDF
    Space science - earth-lunar missions - high-energy propellants and nuclear propulsion systems in manned space fligh

    Microstructure and texture analysis of δ-hydride precipitation in Zircaloy-4 materials by electron microscopy and neutron diffraction

    Get PDF
    This work presents a detailed microstructure and texture study of various hydrided Zircaloy-4 materials by neutron diffraction and microscopy. The results show that the precipitated δ-ZrH1.66 generally follows the δ (111) //α (0001) and δ[]//α[] orientation relationship with the α-Zr matrix. The δ-hydride displays a weak texture that is determined by the texture of the α-Zr matrix, and this dependence essentially originates from the observed orientation correlation between α-Zr and δ-hydride. Neutron diffraction line profile analysis and high-resolution transmission electron microscopy observations reveal a significant number of dislocations present in the δ-hydride, with an estimated average density one order of magnitude higher than that in the α-Zr matrix, which contributes to the accommodation of the substantial misfit strains associated with hydride precipitation in the α-Zr matrix. The present observations provide an insight into the behaviour of δ-hydride precipitation in zirconium alloys and may help with understanding the induced embrittling effect of hydrides.Fil: Wang, Zhiyang. University of Wollongong; Australia. Australian Nuclear Science and Technology Organisation; AustraliaFil: Garbe, Ulf. Australian Nuclear Science and Technology Organisation; AustraliaFil: Li, Huijun. University of Wollongong; AustraliaFil: Wang, Yanbo. University of Sydney; AustraliaFil: Studer, Andrew J.. Australian Nuclear Science and Technology Organisation; AustraliaFil: Sun, Guangai. Institute of Nuclear Physics and Chemistry, CAEP; ChinaFil: Harrison, Robert P.. Australian Nuclear Science and Technology Organisation, Institute of Materials Engineering; AustraliaFil: Liao, Xiaozhou. University of Sydney; AustraliaFil: Vicente Alvarez, Miguel Angel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Santisteban, Javier Roberto. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kong, Charlie. University of New South Wales; Australi

    Nuclear radiation problems, unmanned thermionic reactor ion propulsion spacecraft

    Get PDF
    A nuclear thermionic reactor as the electric power source for an electric propulsion spacecraft introduces a nuclear radiation environment that affects the spacecraft configuration, the use and location of electrical insulators and the science experiments. The spacecraft is conceptually configured to minimize the nuclear shield weight by: (1) a large length to diameter spacecraft; (2) eliminating piping penetrations through the shield; and (3) using the mercury propellant as gamma shield. Since the alumina material is damaged by the high nuclear radiation environment in the reactor it is desirable to locate the alumina insulator outside the reflector or develop a more radiation resistant insulator
    corecore