11,187 research outputs found

    Improving novelty detection with generative adversarial networks on hand gesture data

    Full text link
    We propose a novel way of solving the issue of classification of out-of-vocabulary gestures using Artificial Neural Networks (ANNs) trained in the Generative Adversarial Network (GAN) framework. A generative model augments the data set in an online fashion with new samples and stochastic target vectors, while a discriminative model determines the class of the samples. The approach was evaluated on the UC2017 SG and UC2018 DualMyo data sets. The generative models performance was measured with a distance metric between generated and real samples. The discriminative models were evaluated by their accuracy on trained and novel classes. In terms of sample generation quality, the GAN is significantly better than a random distribution (noise) in mean distance, for all classes. In the classification tests, the baseline neural network was not capable of identifying untrained gestures. When the proposed methodology was implemented, we found that there is a trade-off between the detection of trained and untrained gestures, with some trained samples being mistaken as novelty. Nevertheless, a novelty detection accuracy of 95.4% or 90.2% (depending on the data set) was achieved with just 5% loss of accuracy on trained classes

    Autoencoders and Generative Adversarial Networks for Imbalanced Sequence Classification

    Full text link
    Generative Adversarial Networks (GANs) have been used in many different applications to generate realistic synthetic data. We introduce a novel GAN with Autoencoder (GAN-AE) architecture to generate synthetic samples for variable length, multi-feature sequence datasets. In this model, we develop a GAN architecture with an additional autoencoder component, where recurrent neural networks (RNNs) are used for each component of the model in order to generate synthetic data to improve classification accuracy for a highly imbalanced medical device dataset. In addition to the medical device dataset, we also evaluate the GAN-AE performance on two additional datasets and demonstrate the application of GAN-AE to a sequence-to-sequence task where both synthetic sequence inputs and sequence outputs must be generated. To evaluate the quality of the synthetic data, we train encoder-decoder models both with and without the synthetic data and compare the classification model performance. We show that a model trained with GAN-AE generated synthetic data outperforms models trained with synthetic data generated both with standard oversampling techniques such as SMOTE and Autoencoders as well as with state of the art GAN-based models
    • …
    corecore