1,322 research outputs found

    Novel two dimensional singular spectrum analysis for effective feature extraction and data classification in hyperspectral imaging

    Get PDF
    Feature extraction is of high importance for effective data classification in hyperspectral imaging (HSI). Considering the high correlation among band images, spectral-domain feature extraction is widely employed. For effective spatial information extraction, a 2-D extension to singular spectrum analysis (SSA), a recent technique for generic data mining and temporal signal analysis, is proposed. With 2D-SSA applied to HSI, each band image is decomposed into varying trend, oscillations and noise. Using the trend and selected oscillations as features, the reconstructed signal, with noise highly suppressed, becomes more robust and effective for data classification. Three publicly available data sets for HSI remote sensing data classification are used in our experiments. Comprehensive results using a support vector machine (SVM) classifier have quantitatively evaluated the efficacy of the proposed approach. Benchmarked with several state-of-the-art methods including 2-D empirical mode decomposition (2D-EMD), it is found that our proposed 2D-SSA approach generates the best results in most cases. Unlike 2D-EMD which requires sequential transforms to obtain detailed decomposition, 2D-SSA extracts all components simultaneously. As a result, the executive time in feature extraction can also be dramatically reduced. The superiority in terms of enhanced discrimination ability from 2D-SSA is further validated when a relatively weak classifier, k-nearest neighbor (k-NN), is used for data classification. In addition, the combination of 2D-SSA with 1D-PCA (2D-SSA-PCA) has generated the best results among several other approaches, which has demonstrated the great potential in combining 2D-SSA with other approaches for effective spatial-spectral feature extraction and dimension reduction in HSI

    Linear vs Nonlinear Extreme Learning Machine for Spectral-Spatial Classification of Hyperspectral Image

    Get PDF
    As a new machine learning approach, extreme learning machine (ELM) has received wide attentions due to its good performances. However, when directly applied to the hyperspectral image (HSI) classification, the recognition rate is too low. This is because ELM does not use the spatial information which is very important for HSI classification. In view of this, this paper proposes a new framework for spectral-spatial classification of HSI by combining ELM with loopy belief propagation (LBP). The original ELM is linear, and the nonlinear ELMs (or Kernel ELMs) are the improvement of linear ELM (LELM). However, based on lots of experiments and analysis, we found out that the LELM is a better choice than nonlinear ELM for spectral-spatial classification of HSI. Furthermore, we exploit the marginal probability distribution that uses the whole information in the HSI and learn such distribution using the LBP. The proposed method not only maintain the fast speed of ELM, but also greatly improves the accuracy of classification. The experimental results in the well-known HSI data sets, Indian Pines and Pavia University, demonstrate the good performances of the proposed method.Comment: 13 pages,8 figures,3 tables,articl

    A novel spectral-spatial singular spectrum analysis technique for near real-time in-situ feature extraction in hyperspectral imaging.

    Get PDF
    As a cutting-edge technique for denoising and feature extraction, singular spectrum analysis (SSA) has been applied successfully for feature mining in hyperspectral images (HSI). However, when applying SSA for in situ feature extraction in HSI, conventional pixel-based 1-D SSA fails to produce satisfactory results, while the band-image-based 2D-SSA is also infeasible especially for the popularly used line-scan mode. To tackle these challenges, in this article, a novel 1.5D-SSA approach is proposed for in situ spectral-spatial feature extraction in HSI, where pixels from a small window are used as spatial information. For each sequentially acquired pixel, similar pixels are located from a window centered at the pixel to form an extended trajectory matrix for feature extraction. Classification results on two well-known benchmark HSI datasets and an actual urban scene dataset have demonstrated that the proposed 1.5D-SSA achieves the superior performance compared with several state-of-the-art spectral and spatial methods. In addition, the near real-time implementation in aligning to the HSI acquisition process can meet the requirement of online image analysis for more efficient feature extraction than the conventional offline workflow

    Joint bilateral filtering and spectral similarity-based sparse representation: A generic framework for effective feature extraction and data classification in hyperspectral imaging

    Get PDF
    Classification of hyperspectral images (HSI) has been a challenging problem under active investigation for years especially due to the extremely high data dimensionality and limited number of samples available for training. It is found that hyperspectral image classification can be generally improved only if the feature extraction technique and the classifier are both addressed. In this paper, a novel classification framework for hyperspectral images based on the joint bilateral filter and sparse representation classification (SRC) is proposed. By employing the first principal component as the guidance image for the joint bilateral filter, spatial features can be extracted with minimum edge blurring thus improving the quality of the band-to-band images. For this reason, the performance of the joint bilateral filter has shown better than that of the conventional bilateral filter in this work. In addition, the spectral similarity-based joint SRC (SS-JSRC) is proposed to overcome the weakness of the traditional JSRC method. By combining the joint bilateral filtering and SS-JSRC together, the superiority of the proposed classification framework is demonstrated with respect to several state-of-the-art spectral-spatial classification approaches commonly employed in the HSI community, with better classification accuracy and Kappa coefficient achieved

    Tensor singular spectral analysis for 3D feature extraction in hyperspectral images.

    Get PDF
    Due to the cubic structure of a hyperspectral image (HSI), how to characterize its spectral and spatial properties in three dimensions is challenging. Conventional spectral-spatial methods usually extract spectral and spatial information separately, ignoring their intrinsic correlations. Recently, some 3D feature extraction methods are developed for the extraction of spectral and spatial features simultaneously, although they rely on local spatial-spectral regions and thus ignore the global spectral similarity and spatial consistency. Meanwhile, some of these methods contain huge model parameters which require a large number of training samples. In this paper, a novel Tensor Singular Spectral Analysis (TensorSSA) method is proposed to extract global and low-rank features of HSI. In TensorSSA, an adaptive embedding operation is first proposed to construct a trajectory tensor corresponding to the entire HSI, which takes full advantage of the spatial similarity and improves the adequate representation of the global low-rank properties of the HSI. Moreover, the obtained trajectory tensor, which contains the global and local spatial and spectral information of the HSI, is decomposed by the Tensor singular value decomposition (t-SVD) to explore its low-rank intrinsic features. Finally, the efficacy of the extracted features is evaluated using the accuracy of image classification with a support vector machine (SVM) classifier. Experimental results on three publicly available datasets have fully demonstrated the superiority of the proposed TensorSSA over a few state-of-the-art 2D/3D feature extraction and deep learning algorithms, even with a limited number of training samples

    Fusion of PCA and segmented-PCA domain multiscale 2-D-SSA for effective spectral-spatial feature extraction and data classification in hyperspectral imagery.

    Get PDF
    As hyperspectral imagery (HSI) contains rich spectral and spatial information, a novel principal component analysis (PCA) and segmented-PCA (SPCA)-based multiscale 2-D-singular spectrum analysis (2-D-SSA) fusion method is proposed for joint spectral–spatial HSI feature extraction and classification. Considering the overall spectra and adjacent band correlations of objects, the PCA and SPCA methods are utilized first for spectral dimension reduction, respectively. Then, multiscale 2-D-SSA is applied onto the SPCA dimension-reduced images to extract abundant spatial features at different scales, where PCA is applied again for dimensionality reduction. The obtained multiscale spatial features are then fused with the global spectral features derived from PCA to form multiscale spectral–spatial features (MSF-PCs). The performance of the extracted MSF-PCs is evaluated using the support vector machine (SVM) classifier. Experiments on four benchmark HSI data sets have shown that the proposed method outperforms other state-of-the-art feature extraction methods, including several deep learning approaches, when only a small number of training samples are available

    SpaSSA: superpixelwise adaptive SSA for unsupervised spatial-spectral feature extraction in hyperspectral image.

    Get PDF
    Singular spectral analysis (SSA) has recently been successfully applied to feature extraction in hyperspectral image (HSI), including conventional (1-D) SSA in spectral domain and 2-D SSA in spatial domain. However, there are some drawbacks, such as sensitivity to the window size, high computational complexity under a large window, and failing to extract joint spectral-spatial features. To tackle these issues, in this article, we propose superpixelwise adaptive SSA (SpaSSA), that is superpixelwise adaptive SSA for exploiting local spatial information of HSI. The extraction of local (instead of global) features, particularly in HSI, can be more effective for characterizing the objects within an image. In SpaSSA, conventional SSA and 2-D SSA are combined and adaptively applied to each superpixel derived from an oversegmented HSI. According to the size of the derived superpixels, either SSA or 2-D singular spectrum analysis (2D-SSA) is adaptively applied for feature extraction, where the embedding window in 2D-SSA is also adaptive to the size of the superpixel. Experimental results on the three datasets have shown that the proposed SpaSSA outperforms both SSA and 2D-SSA in terms of classification accuracy and computational complexity. By combining SpaSSA with the principal component analysis (SpaSSA-PCA), the accuracy of land-cover analysis can be further improved, outperforming several state-of-the-art approaches
    • …
    corecore