35 research outputs found

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Automatic BIRAD scoring of breast cancer mammograms

    Get PDF
    A computer aided diagnosis system (CAD) is developed to fully characterize and classify mass to benign and malignancy and to predict BIRAD (Breast Imaging Reporting and Data system) scores using mammographic image data. The CAD includes a preprocessing step to de-noise mammograms. This is followed by an active counter segmentation to deforms an initial curve, annotated by a radiologist, to separate and define the boundary of a mass from background. A feature extraction scheme wasthen used to fully characterize a mass by extraction of the most relevant features that have a large impact on the outcome of a patient biopsy. For this thirty-five medical and mathematical features based on intensity, shape and texture associated to the mass were extracted. Several feature selection schemes were then applied to select the most dominant features for use in next step, classification. Finally, a hierarchical classification schemes were applied on those subset of features to firstly classify mass to benign (mass with BIRAD score 2) and malignant mass (mass with BIRAD score over 4), and secondly to sub classify mass with BIRAD score over 4 to three classes (BIRAD with score 4a,4b,4c). Accuracy of segmentation performance were evaluated by calculating the degree of overlapping between the active counter segmentation and the manual segmentation, and the result was 98.5%. Also reproducibility of active counter 3 using different manual initialization of algorithm by three radiologists were assessed and result was 99.5%. Classification performance was evaluated using one hundred sixty masses (80 masses with BRAD score 2 and 80 mass with BIRAD score over4). The best result for classification of data to benign and malignance was found using a combination of sequential forward floating feature (SFFS) selection and a boosted tree hybrid classifier with Ada boost ensemble method, decision tree learner type and 100 learners’ regression tree classifier, achieving 100% sensitivity and specificity in hold out method, 99.4% in cross validation method and 98.62 % average accuracy in cross validation method. For further sub classification of eighty malignance data with BIRAD score of over 4 (30 mass with BIRAD score 4a,30 masses with BIRAD score 4b and 20 masses with BIRAD score 4c), the best result achieved using the boosted tree with ensemble method bag, decision tree learner type with 200 learners Classification, achieving 100% sensitivity and specificity in hold out method, 98.8% accuracy and 98.41% average accuracy for ten times run in cross validation method. Beside those 160 masses (BIRAD score 2 and over 4) 13 masses with BIRAD score 3 were gathered. Which means patient is recommended to be tested in another medical imaging technique and also is recommended to do follow-up in six months. The CAD system was trained with mass with BIRAD score 2 and over 4 also 4 it was further tested using 13 masses with a BIRAD score of 3 and the CAD results are shown to agree with the radiologist’s classification after confirming in six months follow up. The present results demonstrate high sensitivity and specificity of the proposed CAD system compared to prior research. The present research is therefore intended to make contributions to the field by proposing a novel CAD system, consists of series of well-selected image processing algorithms, to firstly classify mass to benign or malignancy, secondly sub classify BIRAD 4 to three groups and finally to interpret BIRAD 3 to BIRAD 2 without a need of follow up study

    Digital Image Processing Applications

    Get PDF
    Digital image processing can refer to a wide variety of techniques, concepts, and applications of different types of processing for different purposes. This book provides examples of digital image processing applications and presents recent research on processing concepts and techniques. Chapters cover such topics as image processing in medical physics, binarization, video processing, and more

    Quantitative Analysis of Ultrasound Images of the Preterm Brain

    Get PDF
    In this PhD new algorithms are proposed to better understand and diagnose white matter damage in the preterm Brain. Since Ultrasound imaging is the most suited modality for the inspection of brain pathologies in very low birth weight infants we propose multiple techniques to assist in what is called Computer-Aided Diagnosis. As a main result we are able to increase the qualitative diagnosis from a 70% detectability to a 98% quantitative detectability

    Thickness estimation, automated classification and novelty detection in ultrasound images of the plantar fascia tissues

    Get PDF
    The plantar fascia (PF) tissue plays an important role in the movement and the stability of the foot during walking and running. Thus it is possible for the overuse and the associated medical problems to cause injuries and some severe common diseases. Ultrasound (US) imaging offers significant potential in diagnosis of PF injuries and monitoring treatments. Despite the advantages of US, the generated PF images are difficult to interpret during medical assessment. This is partly due to the size and position of the PF in relation to the adjacent tissues. This limits the use of US in clinical practice and therefore impacts on patient services for what is a common problem and a major cause of foot pain and discomfort. It is therefore a requirement to devise an automated system that allows better and easier interpretation of PF US images during diagnosis. This study is concerned with developing a computer-based system using a combination of medical image processing techniques whereby different PF US images can be visually improved, segmented, analysed and classified as normal or abnormal, so as to provide more information to the doctors and the clinical treatment department for early diagnosis and the detection of the PF associated medical problems. More specifically, this study is required to investigate the possibility of a proposed model for localizing and estimating the PF thickness a cross three different sections (rearfoot, midfoot and forefoot) using a supervised ANN segmentation technique. The segmentation method uses RBF artificial neural network module in order to classify small overlapping patches into PF and non-PF tissue. Feature selection technique was performed as a post-processing step for feature extraction to reduce the number of the extracted features. Then the trained RBF-ANN is used to segment the desired PF region. The PF thickness was calculated using two different methods: distance transformation and a proposed area-length calculation algorithm. Additionally, different machine learning approaches were investigated and applied to the segmented PF region in order to distinguish between symptomatic and asymptomatic PF subjects using the best normalized and selected feature set. This aims to facilitate the characterization and the classification of the PF area for the identification of patients with inferior heel pain at risk of plantar fasciitis. Finally, a novelty detection framework for detecting the symptomatic PF samples (with plantar fasciitis disorder) using only asymptomatic samples is proposed. This model implies the following: feature analysis, building a normality model by training the one-class SVDD classifier using only asymptomatic PF training datasets, and computing novelty scores using the trained SVDD classifier, training and testing asymptomatic datasets, and testing symptomatic datasets of the PF dataset. The performance evaluation results showed that the proposed approaches used in this study obtained favourable results compared to other methods reported in the literature

    Prostate Segmentation and Regions of Interest Detection in Transrectal Ultrasound Images

    Get PDF
    The early detection of prostate cancer plays a significant role in the success of treatment and outcome. To detect prostate cancer, imaging modalities such as TransRectal UltraSound (TRUS) and Magnetic Resonance Imaging (MRI) are relied on. MRI images are more comprehensible than TRUS images which are corrupted by noise such as speckles and shadowing. However, MRI screening is costly, often unavailable in many community hospitals, time consuming, and requires more patient preparation time. Therefore, TRUS is more popular for screening and biopsy guidance for prostate cancer. For these reasons, TRUS images are chosen in this research. Radiologists first segment the prostate image from ultrasound image and then identify the hypoechoic regions which are more likely to exhibit cancer and should be considered for biopsy. In this thesis, the focus is on prostate segmentation and on Regions of Interest (ROI)segmentation. First, the extraneous tissues surrounding the prostate gland are eliminated. Consequently, the process of detecting the cancerous regions is focused on the prostate gland only. Thus, the diagnosing process is significantly shortened. Also, segmentation techniques such as thresholding, region growing, classification, clustering, Markov random field models, artificial neural networks (ANNs), atlas-guided, and deformable models are investigated. In this dissertation, the deformable model technique is selected because it is capable of segmenting difficult images such as ultrasound images. Deformable models are classified as either parametric or geometric deformable models. For the prostate segmentation, one of the parametric deformable models, Gradient Vector Flow (GVF) deformable contour, is adopted because it is capable of segmenting the prostate gland, even if the initial contour is not close to the prostate boundary. The manual segmentation of ultrasound images not only consumes much time and effort, but also leads to operator-dependent results. Therefore, a fully automatic prostate segmentation algorithm is proposed based on knowledge-based rules. The new algorithm results are evaluated with respect to their manual outlining by using distance-based and area-based metrics. Also, the novel technique is compared with two well-known semi-automatic algorithms to illustrate its superiority. With hypothesis testing, the proposed algorithm is statistically superior to the other two algorithms. The newly developed algorithm is operator-independent and capable of accurately segmenting a prostate gland with any shape and orientation from the ultrasound image. The focus of the second part of the research is to locate the regions which are more prone to cancer. Although the parametric dynamic contour technique can readily segment a single region, it is not conducive for segmenting multiple regions, as required in the regions of interest (ROI) segmentation part. Since the number of regions is not known beforehand, the problem is stated as 3D one by using level set approach to handle the topology changes such as splitting and merging the contours. For the proposed ROI segmentation algorithm, one of the geometric deformable models, active contours without edges, is used. This technique is capable of segmenting the regions with either weak edges, or even, no edges at all. The results of the proposed ROI segmentation algorithm are compared with those of the two experts' manual marking. The results are also compared with the common regions manually marked by both experts and with the total regions marked by either expert. The proposed ROI segmentation algorithm is also evaluated by using region-based and pixel-based strategies. The evaluation results indicate that the proposed algorithm produces similar results to those of the experts' manual markings, but with the added advantages of being fast and reliable. This novel algorithm also detects some regions that have been missed by one expert but confirmed by the other. In conclusion, the two newly devised algorithms can assist experts in segmenting the prostate image and detecting the suspicious abnormal regions that should be considered for biopsy. This leads to the reduction the number of biopsies, early detection of the diseased regions, proper management, and possible reduction of death related to prostate cancer

    Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions

    Full text link
    Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in the deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. In this paper, we provide an extensive survey of deep learning-based breast cancer imaging research, covering studies on mammogram, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods, publicly available datasets, and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are described in detail. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.Comment: Survey, 41 page
    corecore