14 research outputs found

    On complete representability of Pinter's algebras and related structures

    Full text link
    We answer an implicit question of Ian Hodkinson's. We show that atomic Pinters algebras may not be completely representable, however the class of completely representable Pinters algebras is elementary and finitely axiomatizable. We obtain analagous results for infinite dimensions (replacing finite axiomatizability by finite schema axiomatizability). We show that the class of subdirect products of set algebras is a canonical variety that is locally finite only for finite dimensions, and has the superamalgamation property; the latter for all dimensions. However, the algebras we deal with are expansions of Pinter algebras with substitutions corresponding to tranpositions. It is true that this makes the a lot of the problems addressed harder, but this is an acet, not a liability. Futhermore, the results for Pinter's algebras readily follow by just discarding the substitution operations corresponding to transpostions. Finally, we show that the multi-dimensional modal logic corresponding to finite dimensional algebras have an NPNP-complete satisfiability problem.Comment: arXiv admin note: substantial text overlap with arXiv:1302.304

    Notions of density that imply representability in algebraic logic

    No full text
    Henkin and Tarski proved that an atomic cylindric algebra in which every atom is a rectangle must be representable (as a cylindric set algebra). This theorem and its analogues for quasi-polyadic algebras with and without equality are formulated in Henkin, Monk and Tarski [13]. We introduce a natural and more general notion of rectangular density that can be applied to arbitrary cylindric and quasi-polyadic algebras, not just atomic ones. We then show that every rectangularly dense cylindric algebra is representable, and we extend this result to other classes of algebras of logic, for example quasi-polyadic algebras and substitution-cylindrification algebras with and without equality, relation algebras, and special Boolean monoids. The results of op. cit. mentioned above are special cases of our general theorems. We point out an error in the proof of the Henkin-Monk-Tarski representation theorem for atomic, equality-free, quasi-polyadic algebras with rectangular atoms. The error consists in the implicit assumption of a property that does not, in general, hold. We then give a correct proof of their theorem. Henkin and Tarski also introduced the notion of a rich cylindric algebra and proved in op. cit. that every rich cylindric algebra of finite dimension (or, more generally, of locally finite dimension) satisfying certain special identities is representable. We introduce a modification of the notion of a rich algebra that, in our opinion, renders it more natural. In particular, under this modification richness becomes a density notion. Moreover, our notion of richness applies not only to algebras with equality, such as cylindric algebras, but also to algebras without equality. We show that a finite dimensional algebra is rich iff it is rectangularly dense and quasi-atomic; moreover, each of these conditions is also equivalent to a very natural condition of point density. As a consequence, every finite dimensional (or locally finite dimensional) rich algebra of logic is representable. We do not have to assume the validity of any special identities to establish this representability. Not only does this give an improvement of the Henkin-Tarski representation theorem for rich cylindric algebras, it solves positively an open problem in op. cit. concerning the representability of finite dimensional rich quasi-polyadic algebras without equality
    corecore