245 research outputs found

    3-D axisymmetric subsonic flows with nonzero swirl for the compressible Euler-Poisson system

    Get PDF
    We address the structural stability of 3-D axisymmetric subsonic flows with nonzero swirl for the steady compressible Euler-Poisson system in a cylinder supplemented with non small boundary data. A special Helmholtz decomposition of the velocity field is introduced for 3-D axisymmetric flow with a nonzero swirl(=angular momentum density) component. With the newly introduced decomposition, a quasilinear elliptic system of second order is derived from the elliptic modes in Euler-Poisson system for subsonic flows. Due to the nonzero swirl, the main difficulties lie in the solvability of a singular elliptic equation which concerns the angular component of the vorticity in its cylindrical representation, and in analysis of streamlines near the axis r=0r=0

    Steady Euler Flows with Large Vorticity and Characteristic Discontinuities in Arbitrary Infinitely Long Nozzles

    Full text link
    We establish the existence and uniqueness of smooth solutions with large vorticity and weak solutions with vortex sheets/entropy waves for the steady Euler equations for both compressible and incompressible fluids in arbitrary infinitely long nozzles. We first develop a new approach to establish the existence of smooth solutions without assumptions on the sign of the second derivatives of the horizontal velocity, or the Bernoulli and entropy functions, at the inlet for the smooth case. Then the existence for the smooth case can be applied to construct approximate solutions to establish the existence of weak solutions with vortex sheets/entropy waves by nonlinear arguments. This is the first result on the global existence of solutions of the multidimensional steady compressible full Euler equations with free boundaries, which are not necessarily small perturbations of piecewise constant background solutions. The subsonic-sonic limit of the solutions is also shown. Finally, through the incompressible limit, we establish the existence and uniqueness of incompressible Euler flows in arbitrary infinitely long nozzles for both the smooth solutions with large vorticity and the weak solutions with vortex sheets. The methods and techniques developed here will be useful for solving other problems involving similar difficulties.Comment: 43 pages; 2 figures; To be published in Advances in Mathematics (2019

    Incompressible Limit of Solutions of Multidimensional Steady Compressible Euler Equations

    Full text link
    A compactness framework is formulated for the incompressible limit of approximate solutions with weak uniform bounds with respect to the adiabatic exponent for the steady Euler equations for compressible fluids in any dimension. One of our main observations is that the compactness can be achieved by using only natural weak estimates for the mass conservation and the vorticity. Another observation is that the incompressibility of the limit for the homentropic Euler flow is directly from the continuity equation, while the incompresibility of the limit for the full Euler flow is from a combination of all the Euler equations. As direct applications of the compactness framework, we establish two incompressible limit theorems for multidimensional steady Euler flows through infinitely long nozzles, which lead to two new existence theorems for the corresponding problems for multidimensional steady incompressible Euler equations.Comment: 17 pages; 2 figures. arXiv admin note: text overlap with arXiv:1311.398

    Variational Structure and Two Dimensional Jet Flows for Compressible Euler System with Non-zero Vorticity

    Full text link
    In this paper, we investigate the well-posedness theory of compressible jet flows for two dimensional steady Euler system with non-zero vorticity. One of the key observations is that the stream function formulation for two dimensional compressible steady Euler system with non-zero vorticity enjoys a variational structure, so that the jet problem can be reformulated as a domain variation problem. This allows us to adapt the framework developed by Alt, Caffarelli and Friedman for the one-phase free boundary problems to obtain the existence and uniqueness of smooth solutions to the subsonic jet problem with non-zero vorticity. We also show that there is a critical mass flux, such that as long as the incoming mass flux does not exceed the critical value, the well-posedness theory holds true
    corecore