146,957 research outputs found

    Light and Motion in SDSS Stripe 82: The Catalogues

    Full text link
    We present a new public archive of light-motion curves in Sloan Digital Sky Survey (SDSS) Stripe 82, covering 99 deg in right ascension from RA = 20.7 h to 3.3 h and spanning 2.52 deg in declination from Dec = -1.26 to 1.26 deg, for a total sky area of ~249 sq deg. Stripe 82 has been repeatedly monitored in the u, g, r, i and z bands over a seven-year baseline. Objects are cross-matched between runs, taking into account the effects of any proper motion. The resulting catalogue contains almost 4 million light-motion curves of stellar objects and galaxies. The photometry are recalibrated to correct for varying photometric zeropoints, achieving ~20 mmag and ~30 mmag root-mean-square (RMS) accuracy down to 18 mag in the g, r, i and z bands for point sources and extended sources, respectively. The astrometry are recalibrated to correct for inherent systematic errors in the SDSS astrometric solutions, achieving ~32 mas and ~35 mas RMS accuracy down to 18 mag for point sources and extended sources, respectively. For each light-motion curve, 229 photometric and astrometric quantities are derived and stored in a higher-level catalogue. On the photometric side, these include mean exponential and PSF magnitudes along with uncertainties, RMS scatter, chi^2 per degree of freedom, various magnitude distribution percentiles, object type (stellar or galaxy), and eclipse, Stetson and Vidrih variability indices. On the astrometric side, these quantities include mean positions, proper motions as well as their uncertainties and chi^2 per degree of freedom. The here presented light-motion curve catalogue is complete down to r~21.5 and is at present the deepest large-area photometric and astrometric variability catalogue available.Comment: MNRAS accepte

    The mass of Albireo Aa and the nature of Albireo AB: New aspects from Gaia DR2

    Full text link
    Aims: We aim to clarify the nature of Albireo AB and specifically to decipher whether it is an optical or physical pair. We also try to determine the mass of Albireo Aa. Methods: We scrutinize and compare the available absolute astrometric data (from Hipparcos and Gaia DR2) of Albireo A and B, and we investigate the relative orbit of the pair Albireo Aa,Ac using orbit solutions based on ground-based interferometric measurements. Results: The mass of Albireo Aa (K3 II) is surprisingly small; only an upper limit of about 0.7 solar masses could be derived. The systemic proper motion of Aa,Ac differs from that of component B by about 10 mas/year with an uncertainty of less than 2 mas/year. Albireo AB is therefore most probably an optical double. Conclusions: Specific astrometric and spectroscopic follow-up observations clarifying the surprising mass estimate for Albireo Aa are recommended.Comment: 4 pages, 3 figures, accepted by Astron. Astrophy

    Evolution of massive binary black holes

    Get PDF
    Since many or most galaxies have central massive black holes (BHs), mergers of galaxies can form massive binary black holes (BBHs). In this paper, we study the evolution of massive BBHs in realistic galaxy models, using a generalization of techniques used to study tidal disruption rates around massive BHs. The evolution of BBHs depends on BH mass ratio and host galaxy type. BBHs with very low mass ratios (say, \la 0.001) are hardly ever formed by mergers of galaxies because the dynamical friction timescale is too long for the smaller BH to sink into the galactic center within a Hubble time. BBHs with moderate mass ratios are most likely to form and survive in spherical or nearly spherical galaxies and in high-luminosity or high-dispersion galaxies; they are most likely to have merged in low-dispersion galaxies (line-of-sight velocity dispersion \la 90 km/s) or in highly flattened or triaxial galaxies. The semimajor axes and orbital periods of surviving BBHs are generally in the range 10^{-3}-10 pc and 10-10^5 yr; and they are larger in high-dispersion galaxies than in low-dispersion galaxies, larger in nearly spherical galaxies than in highly flattened or triaxial galaxies, and larger for BBHs with equal masses than for BBHs with unequal masses. The orbital velocities of surviving BBHs are generally in the range 10^2-10^4 km/s. The methods of detecting surviving BBHs are also discussed. If no evidence of BBHs is found in AGNs, this may be either because gas plays a major role in BBH orbital decay or because nuclear activity switches on soon after a galaxy merger, and ends before the smaller BH has had time to spiral to the center of the galaxy.Comment: 32 pages, including 14 figures, submitted to MNRA

    Prospects of constraining the dense matter equation of state from the timing analysis of pulsars in double neutron star binaries: the cases of PSR J0737-3039A and PSR J1757-1854

    Full text link
    The Lense-Thirring effect from spinning neutron stars in double neutron star binaries contribute to the periastron advance of the orbit. This extra term involves the moment of inertia of the neutron stars. Moment of inertia, on the other hand, depends on the mass and spin of the neutron star as well as the equation of state of the matter. If at least one member of the double neutron star binary (better the faster one) is a radio pulsar, then accurate timing analysis might lead to the estimation of the contribution of the Lense-Thirring effect to the periastron advance, which will lead to the measurement of the moment of inertia of the pulsar. Combination of the knowledge on the values of the moment of inertia, the mass, and the spin of the pulsar, will give a new constraint on the equation of state. Pulsars in double neutron star binaries are the best for this purpose as short orbits and moderately high eccentricities make the Lense-Thirring effect substantial, whereas tidal effects are negligible (unlike pulsars with main sequence or white-dwarf binaries). The most promising pulsars are PSR J0737-3039A and PSR J1757-1854. The spin-precession of pulsars due to the misalignment between the spin and the orbital angular momentum vectors affect the contribution of the Lense-Thirring effect to the periastron advance. This effect has been explored for both PSR J0737-3039A and PSR J1757-1854, and as the misalignment angles for both of these pulsars are small, the variation in the Lense-Thirring term is not much. However, to extract the Lense-Thirring effect from the observed rate of the periastron advance, more accurate timing solutions including precise proper motion and distance measurements are essential.Comment: To appear in the special issue of `Universe' dedicated to the conference: "Compact Stars in the QCD Phase Diagram VI" held at The Joint Institute for Nuclear Research (JINR), Dubna, Russia; during 26 - 29 September, 201
    • …
    corecore