50,723 research outputs found
Long-term trends in tropical cyclone tracks around Korea and Japan in late summer and early fall
This study investigates long-term trends in tropical cyclones (TCs) over the extratropical western North Pacific (WNP) over a period of 35 years (1982-2016). The area analyzed extended across 30-45 degrees N and 120-150 degrees E, including the regions of Korea and Japan that were seriously affected by TCs. The northward migration of TCs over the WNP to the mid-latitudes showed a sharp increase in early fall. In addition, the duration of TCs over the WNP that migrated northwards showed an increase, specifically in early to mid-September. Therefore, more recently, TC tracks have been observed to significantly extend into the mid-latitudes. The recent northward extension of TC tracks over the WNP in early fall was observed to be associated with changes in environmental conditions that were favorable for TC activities, including an increase in sea surface temperature (SST), decrease in vertical wind shear, expansion of subtropical highs, strong easterly steering winds, and an increase in relative vorticity. In contrast, northward migrations of TCs to Korea and Japan showed a decline in late August, because of the presence of unfavorable environmental conditions for TC activities. These changes in environmental conditions, such as SST and vertical wind shear, can be partially associated with the Pacific decadal oscillation
Recommended from our members
Evaluation of coupled ocean-atmosphere simulations of northern hemisphere extratropical climates in the mid-Holocene
We have used the BIOME4 biogeography–biochemistry model and comparison with palaeovegetation data to evaluate the response of six ocean–atmosphere general circulation models to mid-Holocene changes in orbital forcing in the mid- to high-latitudes of the northern hemisphere. All the models produce: (a) a northward shift of the northern limit of boreal forest, in response to simulated summer warming in high-latitudes. The northward shift is markedly asymmetric, with larger shifts in Eurasia than in North America; (b) an expansion of xerophytic vegetation in mid-continental North America and Eurasia, in response to increased temperatures during the growing season; (c) a northward expansion of temperate forests in eastern North America, in response to simulated winter warming. The northward shift of the northern limit of boreal forest and the northward expansion of temperate forests in North America are supported by palaeovegetation data. The expansion of xerophytic vegetation in mid-continental North America is consistent with palaeodata, although the extent may be over-estimated. The simulated expansion of xerophytic vegetation in Eurasia is not supported by the data. Analysis of an asynchronous coupling of one model to an equilibrium-vegetation model suggests vegetation feedback exacerbates this mid-continental drying and produces conditions more unlike the observations. Not all features of the simulations are robust: some models produce winter warming over Europe while others produce winter cooling. As a result, some models show a northward shift of temperate forests (consistent with, though less marked than, the expansion shown by data) and others produce a reduction in temperate forests. Elucidation of the cause of such differences is a focus of the current phase of the Palaeoclimate Modelling Intercomparison Project
Polar observations of transverse magnetic pulsations initiated at substorm onset in the high-latitude plasma sheet
Northern Hemisphere Glaciation during the Globally Warm Early Late Pliocene
The early Late Pliocene (3.6 to ~3.0 million years ago) is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS) M2 interrupted this phase of global warmth ~3.30 million years ago, and is seen as a premature attempt of the climate system to establish an ice-age world. Here we propose a conceptual model for the glaciation and deglaciation of MIS M2 based on geochemical and palynological records from five marine sediment cores along a Caribbean to eastern North Atlantic transect. Our records show that increased Pacific-to-Atlantic flow via the Central American Seaway weakened the North Atlantic Current and attendant northward heat transport prior to MIS M2. The consequent cooling of the northern high latitude oceans permitted expansion of the continental ice sheets during MIS M2, despite near-modern atmospheric CO2 concentrations. Sea level drop during this glaciation halted the inflow of Pacific water to the Atlantic via the Central American Seaway, allowing the build-up of a Caribbean Warm Pool. Once this warm pool was large enough, the Gulf Stream–North Atlantic Current system was reinvigorated, leading to significant northward heat transport that terminated the glaciation. Before and after MIS M2, heat transport via the North Atlantic Current was crucial in maintaining warm climates comparable to those predicted for the end of this century
Magnetotail changes in relation to the solar wind magnetic field and magnetospheric substorms
An attempt is made to understand some of the magnetotail dynamics by using simultaneous observations from several satellites: Explorers 33 and 35 in the solar wind, IMP 4 in the near magnetotail (30 RE), ATS 1, and OGO 5 in the magnetosphere. It was observed that in the main lobes of the tail the magnetic field increases slowly when the interplanetary magnetic field turns southward, and can decrease slowly after a substorm. The plasma sheet changes indicate a thinning when the interplanetary magnetic field turns southward and an expansion when it turns northward. When combined with the plasma sheet expansion, which has been observed to follow a substorm, these results allow a schematic view of the relations between the changes in the orientation of the solar wind magnetic field, the substorms, and the changes in the tail parameters to be developed
Deflection and Rotation of CMEs from Active Region 11158
Between the 13 and 16 of February 2011 a series of coronal mass ejections
(CMEs) erupted from multiple polarity inversion lines within active region
11158. For seven of these CMEs we use the Graduated Cylindrical Shell (GCS)
flux rope model to determine the CME trajectory using both Solar Terrestrial
Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph
images. We then use the Forecasting a CME's Altered Trajectory (ForeCAT) model
for nonradial CME dynamics driven by magnetic forces, to simulate the
deflection and rotation of the seven CMEs. We find good agreement between the
ForeCAT results and the reconstructed CME positions and orientations. The CME
deflections range in magnitude between 10 degrees and 30 degrees. All CMEs
deflect to the north but we find variations in the direction of the
longitudinal deflection. The rotations range between 5\mydeg and 50\mydeg with
both clockwise and counterclockwise rotations occurring. Three of the CMEs
begin with initial positions within 2 degrees of one another. These three CMEs
all deflect primarily northward, with some minor eastward deflection, and
rotate counterclockwise. Their final positions and orientations, however,
respectively differ by 20 degrees and 30 degrees. This variation in deflection
and rotation results from differences in the CME expansion and radial
propagation close to the Sun, as well as the CME mass. Ultimately, only one of
these seven CMEs yielded discernible in situ signatures near Earth, despite the
active region facing near Earth throughout the eruptions. We suggest that the
differences in the deflection and rotation of the CMEs can explain whether each
CME impacted or missed the Earth.Comment: 18 pages, 6 figures, accepted in Solar Physic
Northward expansion of paddy rice in northeastern Asia during 2000-2014.
Paddy rice in monsoon Asia plays an important role in global food security and climate change. Here we documented annual dynamics of paddy rice areas in the northern frontier of Asia, including Northeastern (NE) China, North Korea, South Korea, and Japan, from 2000-2014 through analysis of satellite images. The paddy rice area has increased by 120% (2.5 to 5.5 million ha) in NE China, in comparison to a decrease in South Korea and Japan, and the paddy rice centroid shifted northward from 41.16 °N to 43.70 °N (~310 km) in this period. Market, technology, policy, and climate together drove the rice expansion in NE China. The increased use of greenhouse nurseries, improved rice cultivars, agricultural subsidy policy, and a rising rice price generally promoted northward paddy rice expansion. The potential effects of large rice expansion on climate change and ecological services should be paid more attention in the future
Quasi-periodic Fast-mode Wave Trains Within a Global EUV Wave and Sequential Transverse Oscillations Detected by SDO/AIA
We present the first unambiguous detection of quasi-periodic wave trains
within the broad pulse of a global EUV wave (so-called "EIT wave") occurring on
the limb. These wave trains, running ahead of the lateral CME front of 2-4
times slower, coherently travel to distances along the solar
surface, with initial velocities up to 1400 km/s decelerating to ~650 km/s. The
rapid expansion of the CME initiated at an elevated height of 110 Mm produces a
strong downward and lateral compression, which may play an important role in
driving the primary EUV wave and shaping its front forwardly inclined toward
the solar surface. The waves have a dominant 2 min periodicity that matches the
X-ray flare pulsations, suggesting a causal connection. The arrival of the
leading EUV wave front at increasing distances produces an uninterrupted chain
sequence of deflections and/or transverse (likely fast kink mode) oscillations
of local structures, including a flux-rope coronal cavity and its embedded
filament with delayed onsets consistent with the wave travel time at an
elevated (by ~50%) velocity within it. This suggests that the EUV wave
penetrates through a topological separatrix surface into the cavity, unexpected
from CME caused magnetic reconfiguration. These observations, when taken
together, provide compelling evidence of the fast-mode MHD wave nature of the
{\it primary (outer) fast component} of a global EUV wave, running ahead of the
{\it secondary (inner) slow} component of CME-caused restructuring.Comment: 17 pages, 12 figures; accepted by ApJ, April 24, 201
New Reports of Exotic and Native Ambrosia and Bark Beetle Species (Coleoptera: Curculionidae: Scolytinae) From Ohio
In a 2007 survey of ambrosia and bark beetles (Coleoptera: Curculionidae: Scolytinae) along a transect in northeastern Ohio, we collected six exotic and three native species not previously reported from the state. These species include the exotic ambrosia beetles Ambrosiodmus rubricollis (Eichhoff), Dryoxylon onoharaensum (Murayama), Euwallacea validus (Eichhoff), Xyleborus californicus Wood, Xyleborus pelliculosusEichhoff, and Xylosandrus crassiusculus (Motschulsky). The native ambrosia beetle Corthylus columbianus Hopkins, and the native bark beetles Dryocoetes autographus (Ratzeburg) and Hylastes tenuis Eichhoff are also reported from Ohio for the first time. Our study suggests a northward range expansion for five of the six exotic species including, X. crassiusculus, which is an important pest of nursery and orchard crops in the southeastern United States
- …
