470 research outputs found

    XML Matchers: approaches and challenges

    Full text link
    Schema Matching, i.e. the process of discovering semantic correspondences between concepts adopted in different data source schemas, has been a key topic in Database and Artificial Intelligence research areas for many years. In the past, it was largely investigated especially for classical database models (e.g., E/R schemas, relational databases, etc.). However, in the latest years, the widespread adoption of XML in the most disparate application fields pushed a growing number of researchers to design XML-specific Schema Matching approaches, called XML Matchers, aiming at finding semantic matchings between concepts defined in DTDs and XSDs. XML Matchers do not just take well-known techniques originally designed for other data models and apply them on DTDs/XSDs, but they exploit specific XML features (e.g., the hierarchical structure of a DTD/XSD) to improve the performance of the Schema Matching process. The design of XML Matchers is currently a well-established research area. The main goal of this paper is to provide a detailed description and classification of XML Matchers. We first describe to what extent the specificities of DTDs/XSDs impact on the Schema Matching task. Then we introduce a template, called XML Matcher Template, that describes the main components of an XML Matcher, their role and behavior. We illustrate how each of these components has been implemented in some popular XML Matchers. We consider our XML Matcher Template as the baseline for objectively comparing approaches that, at first glance, might appear as unrelated. The introduction of this template can be useful in the design of future XML Matchers. Finally, we analyze commercial tools implementing XML Matchers and introduce two challenging issues strictly related to this topic, namely XML source clustering and uncertainty management in XML Matchers.Comment: 34 pages, 8 tables, 7 figure

    A Survey on Mapping Semi-Structured Data and Graph Data to Relational Data

    Get PDF
    The data produced by various services should be stored and managed in an appropriate format for gaining valuable knowledge conveniently. This leads to the emergence of various data models, including relational, semi-structured, and graph models, and so on. Considering the fact that the mature relational databases established on relational data models are still predominant in today's market, it has fueled interest in storing and processing semi-structured data and graph data in relational databases so that mature and powerful relational databases' capabilities can all be applied to these various data. In this survey, we review existing methods on mapping semi-structured data and graph data into relational tables, analyze their major features, and give a detailed classification of those methods. We also summarize the merits and demerits of each method, introduce open research challenges, and present future research directions. With this comprehensive investigation of existing methods and open problems, we hope this survey can motivate new mapping approaches through drawing lessons from eachmodel's mapping strategies, aswell as a newresearch topic - mapping multi-model data into relational tables.Peer reviewe

    User Feedback in Probabilistic XML

    Get PDF
    Data integration is a challenging problem in many application areas. Approaches mostly attempt to resolve semantic uncertainty and conflicts between information sources as part of the data integration process. In some application areas, this is impractical or even prohibitive, for example, in an ambient environment where devices on an ad hoc basis have to exchange information autonomously. We have proposed a probabilistic XML approach that allows data integration without user involvement by storing semantic uncertainty and conflicts in the integrated XML data. As a\ud consequence, the integrated information source represents\ud all possible appearances of objects in the real world, the\ud so-called possible worlds.\ud \ud In this paper, we show how user feedback on query results\ud can resolve semantic uncertainty and conflicts in the\ud integrated data. Hence, user involvement is effectively postponed to query time, when a user is already interacting actively with the system. The technique relates positive and\ud negative statements on query answers to the possible worlds\ud of the information source thereby either reinforcing, penalizing, or eliminating possible worlds. We show that after repeated user feedback, an integrated information source better resembles the real world and may converge towards a non-probabilistic information source

    : Méthodes d'Inférence Symbolique pour les Bases de Données

    Get PDF
    This dissertation is a summary of a line of research, that I wasactively involved in, on learning in databases from examples. Thisresearch focused on traditional as well as novel database models andlanguages for querying, transforming, and describing the schema of adatabase. In case of schemas our contributions involve proposing anoriginal languages for the emerging data models of Unordered XML andRDF. We have studied learning from examples of schemas for UnorderedXML, schemas for RDF, twig queries for XML, join queries forrelational databases, and XML transformations defined with a novelmodel of tree-to-word transducers.Investigating learnability of the proposed languages required us toexamine closely a number of their fundamental properties, often ofindependent interest, including normal forms, minimization,containment and equivalence, consistency of a set of examples, andfinite characterizability. Good understanding of these propertiesallowed us to devise learning algorithms that explore a possibly largesearch space with the help of a diligently designed set ofgeneralization operations in search of an appropriate solution.Learning (or inference) is a problem that has two parameters: theprecise class of languages we wish to infer and the type of input thatthe user can provide. We focused on the setting where the user inputconsists of positive examples i.e., elements that belong to the goallanguage, and negative examples i.e., elements that do not belong tothe goal language. In general using both negative and positiveexamples allows to learn richer classes of goal languages than usingpositive examples alone. However, using negative examples is oftendifficult because together with positive examples they may cause thesearch space to take a very complex shape and its exploration may turnout to be computationally challenging.Ce mémoire est une courte présentation d’une direction de recherche, à laquelle j’ai activementparticipé, sur l’apprentissage pour les bases de données à partir d’exemples. Cette recherches’est concentrée sur les modèles et les langages, aussi bien traditionnels qu’émergents, pourl’interrogation, la transformation et la description du schéma d’une base de données. Concernantles schémas, nos contributions consistent en plusieurs langages de schémas pour les nouveaumodèles de bases de données que sont XML non-ordonné et RDF. Nous avons ainsi étudiél’apprentissage à partir d’exemples des schémas pour XML non-ordonné, des schémas pour RDF,des requêtes twig pour XML, les requêtes de jointure pour bases de données relationnelles et lestransformations XML définies par un nouveau modèle de transducteurs arbre-à-mot.Pour explorer si les langages proposés peuvent être appris, nous avons été obligés d’examinerde près un certain nombre de leurs propriétés fondamentales, souvent souvent intéressantespar elles-mêmes, y compris les formes normales, la minimisation, l’inclusion et l’équivalence, lacohérence d’un ensemble d’exemples et la caractérisation finie. Une bonne compréhension de cespropriétés nous a permis de concevoir des algorithmes d’apprentissage qui explorent un espace derecherche potentiellement très vaste grâce à un ensemble d’opérations de généralisation adapté àla recherche d’une solution appropriée.L’apprentissage (ou l’inférence) est un problème à deux paramètres : la classe précise delangage que nous souhaitons inférer et le type d’informations que l’utilisateur peut fournir. Nousnous sommes placés dans le cas où l’utilisateur fournit des exemples positifs, c’est-à-dire deséléments qui appartiennent au langage cible, ainsi que des exemples négatifs, c’est-à-dire qui n’enfont pas partie. En général l’utilisation à la fois d’exemples positifs et négatifs permet d’apprendredes classes de langages plus riches que l’utilisation uniquement d’exemples positifs. Toutefois,l’utilisation des exemples négatifs est souvent difficile parce que les exemples positifs et négatifspeuvent rendre la forme de l’espace de recherche très complexe, et par conséquent, son explorationinfaisable

    Extending and inferring functional dependencies in schema transformation

    Full text link

    XML documents schema design

    Get PDF
    The eXtensible Markup Language (XML) is fast emerging as the dominant standard for storing, describing and interchanging data among various systems and databases on the intemet. It offers schema such as Document Type Definition (DTD) or XML Schema Definition (XSD) for defining the syntax and structure of XML documents. To enable efficient usage of XML documents in any application in large scale electronic environment, it is necessary to avoid data redundancies and update anomalies. Redundancy and anomalies in XML documents can lead not only to higher data storage cost but also to increased costs for data transfer and data manipulation.To overcome this problem, this thesis proposes to establish a formal framework of XML document schema design. To achieve this aim, we propose a method to improve and simplify XML schema design by incorporating a conceptual model of the DTD with a theory of database normalization. A conceptual diagram, Graph-Document Type Definition (G-DTD) is proposed to describe the structure of XML documents at the schema level. For G- DTD itself, we define a structure which incorporates attributes, simple elements, complex elements, and relationship types among them. Furthermore, semantic constraints are also precisely defined in order to capture semantic meanings among the defined XML objects.In addition, to provide a guideline to a well-designed schema for XML documents, we propose a set of normal forms for G-DTD on the basis of rules proposed by Arenas and Libkin and Lv. et al. The corresponding normalization rules to transform from a G- DTD into a normal form schema are also discussed. A case study is given to illustrate the applicability of the concept. As a result, we found that the new normal forms are more concise and practical, in particular as they allow the user to find an 'optimal' structure of XML elements/attributes at the schema level. To prove that our approach is applicable for the database designer, we develop a prototype of XML document schema design using a Z formal specification language. Finally, using the same case study, this formal specification is tested to check for correctness and consistency of the specification. Thus, this gives a confidence that our prototype can be implemented successfully to generate an automatic XML schema design

    XML Schema Clustering with Semantic and Hierarchical Similarity Measures

    Get PDF
    With the growing popularity of XML as the data representation language, collections of the XML data are exploded in numbers. The methods are required to manage and discover the useful information from them for the improved document handling. We present a schema clustering process by organising the heterogeneous XML schemas into various groups. The methodology considers not only the linguistic and the context of the elements but also the hierarchical structural similarity. We support our findings with experiments and analysis

    Generating a Normalized Database Using Class Normalization

    Get PDF
    Relational databases are the most popular databases used by enterprise applications to store persistent data to this day. It gives a lot of flexibility and efficiency. A process called database normalization helps make sure that the database is free from redundancies and update anomalies. In a Database-First approach to software development, the database is designed first, and then an Object-Relational Mapping (ORM) tool is used to generate the programming classes (data layer) to interact with the database. Finally, the business logic code is written to interact with the data layer to persist the business data to the database. However, in modern application development, a process called Code-First approach evolved where the domain classes and the business logic that interacts with the domain classes are written first. Then an Object Relational Mapping (ORM) tool is used to generate the database from the domain classes. In this approach, since database design is not a concern, software programmers may ignore the process of database normalization altogether. To help software programmers in this process, this thesis takes the theory behind the five database normal forms (1NF - 5NF) and proposes Five Class Normal Forms (1CNF - 5CNF) that software programmers may use to normalize their domain classes. This thesis demonstrates that when the Five Class Normal Forms are applied manually to a class by a programmer, the resulting database that is generated from the Code-First approach is also normalized according to the rules of relational theory

    Graph Visualization Using the NoSQL Database

    Get PDF
    The relational database has been a dominant approach for organizing data into formally organized tables for years. Recently, with massive amounts of data being generated, a new type of database called NoSQL has emerged. NoSQL seeks to overcome the drawbacks of SQL, such as fixed schemas, JOIN operations and addresses the scalability problems. In this paper we have reviewed emerging technology called NoSQL and compared it with the traditional relational database. In the first part of the paper, we review the pros and cons of both the technologies and in the second, we tried to address issues involving data visualization. Characteristics such as flexibility, low latency, scalability, schema-less, fast query, and performance are some major advantages of a NoSQL database. To test the properties of NoSQL database, we have developed a graph-visualization application based on Neo4j, a graph database, along with accompanying technologies such as MapReduce and the REST web service
    • …
    corecore