22,062 research outputs found

    Constructive algebraic renormalization of the abelian Higgs-Kibble model

    Get PDF
    We propose an algorithm, based on Algebraic Renormalization, that allows the restoration of Slavnov-Taylor invariance at every order of perturbation expansion for an anomaly-free BRS invariant gauge theory. The counterterms are explicitly constructed in terms of a set of one-particle-irreducible Feynman amplitudes evaluated at zero momentum (and derivatives of them). The approach is here discussed in the case of the abelian Higgs-Kibble model, where the zero momentum limit can be safely performed. The normalization conditions are imposed by means of the Slavnov-Taylor invariants and are chosen in order to simplify the calculation of the counterterms. In particular within this model all counterterms involving BRS external sources (anti-fields) can be put to zero with the exception of the fermion sector.Comment: Jul, 1998, 31 page

    Reconstructing Rational Functions with FireFly\texttt{FireFly}

    Full text link
    We present the open-source C++\texttt{C++} library FireFly\texttt{FireFly} for the reconstruction of multivariate rational functions over finite fields. We discuss the involved algorithms and their implementation. As an application, we use FireFly\texttt{FireFly} in the context of integration-by-parts reductions and compare runtime and memory consumption to a fully algebraic approach with the program Kira\texttt{Kira}.Comment: 46 pages, 3 figures, 6 tables; v2: matches published versio

    S-pairing in neutron matter. I. Correlated Basis Function Theory

    Full text link
    S-wave pairing in neutron matter is studied within an extension of correlated basis function (CBF) theory to include the strong, short range spatial correlations due to realistic nuclear forces and the pairing correlations of the Bardeen, Cooper and Schrieffer (BCS) approach. The correlation operator contains central as well as tensor components. The correlated BCS scheme of Ref. [Nucl. Phys. A363 (1981) 383], developed for simple scalar correlations, is generalized to this more realistic case. The energy of the correlated pair condensed phase of neutron matter is evaluated at the two--body order of the cluster expansion, but considering the one--body density and the corresponding energy vertex corrections at the first order of the Power Series expansion. Based on these approximations, we have derived a system of Euler equations for the correlation factors and for the BCS amplitudes, resulting in correlated non linear gap equations, formally close to the standard BCS ones. These equations have been solved for the momentum independent part of several realistic potentials (Reid, Argonne v_{14} and Argonne v_{8'}) to stress the role of the tensor correlations and of the many--body effects. Simple Jastrow correlations and/or the lack of the density corrections enhance the gap with respect to uncorrelated BCS, whereas it is reduced according to the strength of the tensor interaction and following the inclusion of many--body contributions.Comment: 20 pages, 8 figures, 1 tabl

    Stochastic area distributions: optimal trajectories, Maslov indices and asymptotic results

    Get PDF
    In this paper we study the semi-classical approximation for the distribution of area associated with (i) planar polymer rings constrained to enclose a fixed algebraic area and (ii) planar rings subject to an external electric field and constrained to enclose a fixed algebraic area. We demonstrate that the results are accurate in the asymptotic regime. Moreover, we also show that in case (i) it is possible to reconstruct the exact expression for the distribution, provided the contributions from all optimal trajectories are taken into account, as well as the proper Maslov indices

    Instantaneous Bethe-Salpeter equation: utmost analytic approach

    Get PDF
    The Bethe-Salpeter formalism in the instantaneous approximation for the interaction kernel entering into the Bethe-Salpeter equation represents a reasonable framework for the description of bound states within relativistic quantum field theory. In contrast to its further simplifications (like, for instance, the so-called reduced Salpeter equation), it allows also the consideration of bound states composed of "light" constituents. Every eigenvalue equation with solutions in some linear space may be (approximately) solved by conversion into an equivalent matrix eigenvalue problem. We demonstrate that the matrices arising in these representations of the instantaneous Bethe-Salpeter equation may be found, at least for a wide class of interactions, in an entirely algebraic manner. The advantages of having the involved matrices explicitly, i.e., not "contaminated" by errors induced by numerical computations, at one's disposal are obvious: problems like, for instance, questions of the stability of eigenvalues may be analyzed more rigorously; furthermore, for small matrix sizes the eigenvalues may even be calculated analytically.Comment: LaTeX, 23 pages, 2 figures, version to appear in Phys. Rev.
    corecore