34,258 research outputs found

    Normal completely positive maps on the space of quantum operations

    Full text link
    Quantum supermaps are higher-order maps transforming quantum operations into quantum operations. Here we extend the theory of quantum supermaps, originally formulated in the finite dimensional setting, to the case of higher-order maps transforming quantum operations with input in a separable von Neumann algebra and output in the algebra of the bounded operators on a given separable Hilbert space. In this setting we prove two dilation theorems for quantum supermaps that are the analogues of the Stinespring and Radon-Nikodym theorems for quantum operations. Finally, we consider the case of quantum superinstruments, namely measures with values in the set of quantum supermaps, and derive a dilation theorem for them that is analogue to Ozawa's theorem for quantum instruments. The three dilation theorems presented here show that all the supermaps defined in this paper can be implemented by connecting devices in quantum circuits.Comment: 47 pages (in one-column format), including new results about quantum operations on separable von Neumann algebra

    Radon-Nikodym derivatives of quantum operations

    Full text link
    Given a completely positive (CP) map TT, there is a theorem of the Radon-Nikodym type [W.B. Arveson, Acta Math. {\bf 123}, 141 (1969); V.P. Belavkin and P. Staszewski, Rep. Math. Phys. {\bf 24}, 49 (1986)] that completely characterizes all CP maps SS such that TST-S is also a CP map. This theorem is reviewed, and several alternative formulations are given along the way. We then use the Radon-Nikodym formalism to study the structure of order intervals of quantum operations, as well as a certain one-to-one correspondence between CP maps and positive operators, already fruitfully exploited in many quantum information-theoretic treatments. We also comment on how the Radon-Nikodym theorem can be used to derive norm estimates for differences of CP maps in general, and of quantum operations in particular.Comment: 22 pages; final versio

    Operational distance and fidelity for quantum channels

    Full text link
    We define and study a fidelity criterion for quantum channels, which we term the minimax fidelity, through a noncommutative generalization of maximal Hellinger distance between two positive kernels in classical probability theory. Like other known fidelities for quantum channels, the minimax fidelity is well-defined for channels between finite-dimensional algebras, but it also applies to a certain class of channels between infinite-dimensional algebras (explicitly, those channels that possess an operator-valued Radon--Nikodym density with respect to the trace in the sense of Belavkin--Staszewski) and induces a metric on the set of quantum channels which is topologically equivalent to the CB-norm distance between channels, precisely in the same way as the Bures metric on the density operators associated with statistical states of quantum-mechanical systems, derived from the well-known fidelity (`generalized transition probability') of Uhlmann, is topologically equivalent to the trace-norm distance.Comment: 26 pages, amsart.cls; improved intro, fixed typos, added a reference; accepted by J. Math. Phy

    State convertibility in the von Neumann algebra framework

    Full text link
    We establish a generalisation of the fundamental state convertibility theorem in quantum information to the context of bipartite quantum systems modelled by commuting semi-finite von Neumann algebras. Namely, we establish a generalisation to this setting of Nielsen's theorem on the convertibility of quantum states under local operations and classical communication (LOCC) schemes. Along the way, we introduce an appropriate generalisation of LOCC operations and connect the resulting notion of approximate convertibility to the theory of singular numbers and majorisation in von Neumann algebras. As an application of our result in the setting of II1II_1-factors, we show that the entropy of the singular value distribution relative to the unique tracial state is an entanglement monotone in the sense of Vidal, thus yielding a new way to quantify entanglement in that context. Building on previous work in the infinite-dimensional setting, we show that trace vectors play the role of maximally entangled states for general II1II_1-factors. Examples are drawn from infinite spin chains, quasi-free representations of the CAR, and discretised versions of the CCR.Comment: 36 pages, v2: journal version, 38 page

    A characterization of positive linear maps and criteria of entanglement for quantum states

    Full text link
    Let HH and KK be (finite or infinite dimensional) complex Hilbert spaces. A characterization of positive completely bounded normal linear maps from B(H){\mathcal B}(H) into B(K){\mathcal B}(K) is given, which particularly gives a characterization of positive elementary operators including all positive linear maps between matrix algebras. This characterization is then applied give a representation of quantum channels (operations) between infinite-dimensional systems. A necessary and sufficient criterion of separability is give which shows that a state ρ\rho on HKH\otimes K is separable if and only if (ΦI)ρ0(\Phi\otimes I)\rho\geq 0 for all positive finite rank elementary operators Φ\Phi. Examples of NCP and indecomposable positive linear maps are given and are used to recognize some entangled states that cannot be recognized by the PPT criterion and the realignment criterion.Comment: 20 page

    Pictures of complete positivity in arbitrary dimension

    Get PDF
    Two fundamental contributions to categorical quantum mechanics are presented. First, we generalize the CP-construction, that turns any dagger compact category into one with completely positive maps, to arbitrary dimension. Second, we axiomatize when a given category is the result of this construction.Comment: Final versio
    corecore