6,829 research outputs found

    Non-thermal plasma abatement of trichloroethylene with DC corona discharges

    Get PDF
    The decomposition of trichloroethylene (TCE) in air by non-thermal plasma was investigated with a multi-pin-to-plate direct current (DC) discharge at atmospheric pressure and room temperature. The effects of various operating parameters on the removal efficiency (RE) were examined. The experiments indicated that for low energy densities higher removal could be obtained with positive corona. For negative corona and 10 % relative humidity (RH) a maximum RE of 99.5 % could be achieved at 1100 J L-1. Formation of by-products was qualitatively analyzed in detail with FT-IR spectroscopy and mass spectrometry. Detected by-products for negative corona operated at 300 J L-1 and 10 % RH include dichloroacetylchloride, trichloroacetaldehyde, phosgene, ozone, HCl, Cl2, CO and CO2. The highest RE for TCE was achieved with a relative humidity of 19 %

    Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review

    Get PDF
    In modern technology, there is a constant need to solve very complex problems and to fine-tune existing solutions. This is definitely the case in modern medicine with emerging fields such as regenerative medicine and tissue engineering. The problems, which are studied in these fields, set very high demands on the applied materials. In most cases, it is impossible to find a single material that meets all demands such as biocompatibility, mechanical strength, biodegradability (if required), and promotion of cell-adhesion, proliferation, and differentiation. A common strategy to circumvent this problem is the application of composite materials, which combine the properties of the different constituents. Another possible strategy is to selectively modify the surface of a material using different modification techniques. In the past decade, the use of nonthermal plasmas for selective surface modification has been a rapidly growing research field. This will be the highlight of this review. In a first part of this paper, a general introduction in the field of surface engineering will be given. Thereafter, we will focus on plasma-based strategies for surface modification. The purpose of the present review is twofold. First, we wish to provide a tutorial-type review that allows a fast introduction for researchers into the field. Second, we aim to give a comprehensive overview of recent work on surface modification of polymeric biomaterials, with a focus on plasma-based strategies. Some recent trends will be exemplified. On the basis of this literature study, we will conclude with some future trends for research

    Gas-Surface Dynamics and Profile Evolution during Etching of Silicon

    Get PDF
    Scattering of energetic F atoms on a fluorinated Si surface is studied by molecular beam methods. The energy transfer closely follows hard-sphere collision kinematics. Energy and angular distributions of unreacted F atoms suggest significant multiple-bounce scattering in addition to single-bounce scattering and trapping desorption. An empirical model of the atom-surface interaction dynamics is used in a Monte Carlo simulation of topography evolution during neutral beam etching of Si. Model predictions of profile phenomena are validated by experiments

    Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares

    Full text link
    The extreme ultraviolet portion of the solar spectrum contains a wealth of diagnostic tools for probing the lower solar atmosphere in response to an injection of energy, particularly during the impulsive phase of solar flares. These include temperature and density sensitive line ratios, Doppler shifted emission lines and nonthermal broadening, abundance measurements, differential emission measure profiles, and continuum temperatures and energetics, among others. In this paper I shall review some of the advances made in recent years using these techniques, focusing primarily on studies that have utilized data from Hinode/EIS and SDO/EVE, while also providing some historical background and a summary of future spectroscopic instrumentation.Comment: 34 pages, 8 figures. Submitted to Solar Physics as part of the Topical Issue on Solar and Stellar Flare

    Ultra-narrow Negative Flare Front Observed in Helium-10830~\AA\ using the 1.6 m New Solar Telescope

    Full text link
    Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles which have adverse effects in the near Earth environment. By definition, flares are usually referred to bright features resulting from excess emission. Using the newly commissioned 1.6~m New Solar Telescope at Big Bear Solar Observatory, here we show a striking "negative" flare with a narrow, but unambiguous "dark" moving front observed in He I 10830 \AA, which is as narrow as 340 km and is associated with distinct spectral characteristics in H-alpha and Mg II lines. Theoretically, such negative contrast in He I 10830 \AA\ can be produced under special circumstances, by nonthermal-electron collisions, or photoionization followed by recombination. Our discovery, made possible due to unprecedented spatial resolution, confirms the presence of the required plasma conditions and provides unique information in understanding the energy release and radiative transfer in astronomical objects
    corecore