3 research outputs found

    Cadre Modeling: Simultaneously Discovering Subpopulations and Predictive Models

    Full text link
    We consider the problem in regression analysis of identifying subpopulations that exhibit different patterns of response, where each subpopulation requires a different underlying model. Unlike statistical cohorts, these subpopulations are not known a priori; thus, we refer to them as cadres. When the cadres and their associated models are interpretable, modeling leads to insights about the subpopulations and their associations with the regression target. We introduce a discriminative model that simultaneously learns cadre assignment and target-prediction rules. Sparsity-inducing priors are placed on the model parameters, under which independent feature selection is performed for both the cadre assignment and target-prediction processes. We learn models using adaptive step size stochastic gradient descent, and we assess cadre quality with bootstrapped sample analysis. We present simulated results showing that, when the true clustering rule does not depend on the entire set of features, our method significantly outperforms methods that learn subpopulation-discovery and target-prediction rules separately. In a materials-by-design case study, our model provides state-of-the-art prediction of polymer glass transition temperature. Importantly, the method identifies cadres of polymers that respond differently to structural perturbations, thus providing design insight for targeting or avoiding specific transition temperature ranges. It identifies chemically meaningful cadres, each with interpretable models. Further experimental results show that cadre methods have generalization that is competitive with linear and nonlinear regression models and can identify robust subpopulations.Comment: 8 pages, 6 figure

    Nonsmooth optimization algorithm for solving clusterwise linear regression problems

    No full text
    Clusterwise linear regression consists of finding a number of linear regression functions each approximating a subset of the data. In this paper, the clusterwise linear regression problem is formulated as a nonsmooth nonconvex optimization problem and an algorithm based on an incremental approach and on the discrete gradient method of nonsmooth optimization is designed to solve it. This algorithm incrementally divides the whole dataset into groups which can be easily approximated by one linear regression function. A special procedure is introduced to generate good starting points for solving global optimization problems at each iteration of the incremental algorithm. The algorithm is compared with the multi-start Spath and the incremental algorithms on several publicly available datasets for regression analysis

    Nonsmooth optimization algorithms for clusterwise linear regression

    No full text
    Data mining is about solving problems by analyzing data that present in databases. Supervised and unsupervised data classification (clustering) are among the most important techniques in data mining. Regression analysis is the process of fitting a function (often linear) to the data to discover how one or more variables vary as a function of another. The aim of clusterwise regression is to combine both of these techniques, to discover trends within data, when more than one trend is likely to exist. Clusterwise regression has applications for instance in market segmentation, where it allows one to gather information on customer behaviors for several unknown groups of customers. There exist different methods for solving clusterwise linear regression problems. In spite of that, the development of efficient algorithms for solving clusterwise linear regression problems is still an important research topic. In this thesis our aim is to develop new algorithms for solving clusterwise linear regression problems in large data sets based on incremental and nonsmooth optimization approaches. Three new methods for solving clusterwise linear regression problems are developed and numerically tested on publicly available data sets for regression analysis. The first method is a new algorithm for solving the clusterwise linear regression problems based on their nonsmooth nonconvex formulation. This is an incremental algorithm. The second method is a nonsmooth optimization algorithm for solving clusterwise linear regression problems. Nonsmooth optimization techniques are proposed to use instead of the Sp¨ath algorithm to solve optimization problems at each iteration of the incremental algorithm. The discrete gradient method is used to solve nonsmooth optimization problems at each iteration of the incremental algorithm. This approach allows one to reduce the CPU time and the number of regression problems solved in comparison with the first incremental algorithm. The third algorithm is an algorithm based on an incremental approach and on the smoothing techniques for solving clusterwise linear regression problems. The use of smoothing techniques allows one to apply powerful methods of smooth nonlinear programming to solve clusterwise linear regression problems. Numerical results are presented for all three algorithms using small to large data sets. The new algorithms are also compared with multi-start Sp¨ath algorithm for clusterwise linear regression.Doctor of Philosoph
    corecore