77 research outputs found

    Nonparametric variational inference

    Full text link
    Variational methods are widely used for approximate posterior inference. However, their use is typically limited to families of distributions that enjoy particular conjugacy properties. To circumvent this limitation, we propose a family of variational approximations inspired by nonparametric kernel density estimation. The locations of these kernels and their bandwidth are treated as variational parameters and optimized to improve an approximate lower bound on the marginal likelihood of the data. Using multiple kernels allows the approximation to capture multiple modes of the posterior, unlike most other variational approximations. We demonstrate the efficacy of the nonparametric approximation with a hierarchical logistic regression model and a nonlinear matrix factorization model. We obtain predictive performance as good as or better than more specialized variational methods and sample-based approximations. The method is easy to apply to more general graphical models for which standard variational methods are difficult to derive.Comment: ICML201

    A Stein variational Newton method

    Full text link
    Stein variational gradient descent (SVGD) was recently proposed as a general purpose nonparametric variational inference algorithm [Liu & Wang, NIPS 2016]: it minimizes the Kullback-Leibler divergence between the target distribution and its approximation by implementing a form of functional gradient descent on a reproducing kernel Hilbert space. In this paper, we accelerate and generalize the SVGD algorithm by including second-order information, thereby approximating a Newton-like iteration in function space. We also show how second-order information can lead to more effective choices of kernel. We observe significant computational gains over the original SVGD algorithm in multiple test cases.Comment: 18 pages, 7 figure

    Variational Inference in Nonconjugate Models

    Full text link
    Mean-field variational methods are widely used for approximate posterior inference in many probabilistic models. In a typical application, mean-field methods approximately compute the posterior with a coordinate-ascent optimization algorithm. When the model is conditionally conjugate, the coordinate updates are easily derived and in closed form. However, many models of interest---like the correlated topic model and Bayesian logistic regression---are nonconjuate. In these models, mean-field methods cannot be directly applied and practitioners have had to develop variational algorithms on a case-by-case basis. In this paper, we develop two generic methods for nonconjugate models, Laplace variational inference and delta method variational inference. Our methods have several advantages: they allow for easily derived variational algorithms with a wide class of nonconjugate models; they extend and unify some of the existing algorithms that have been derived for specific models; and they work well on real-world datasets. We studied our methods on the correlated topic model, Bayesian logistic regression, and hierarchical Bayesian logistic regression
    corecore