3 research outputs found

    Nonparametric Structure Regularization Machine for 2D Hand Pose Estimation

    Full text link
    Hand pose estimation is more challenging than body pose estimation due to severe articulation, self-occlusion and high dexterity of the hand. Current approaches often rely on a popular body pose algorithm, such as the Convolutional Pose Machine (CPM), to learn 2D keypoint features. These algorithms cannot adequately address the unique challenges of hand pose estimation, because they are trained solely based on keypoint positions without seeking to explicitly model structural relationship between them. We propose a novel Nonparametric Structure Regularization Machine (NSRM) for 2D hand pose estimation, adopting a cascade multi-task architecture to learn hand structure and keypoint representations jointly. The structure learning is guided by synthetic hand mask representations, which are directly computed from keypoint positions, and is further strengthened by a novel probabilistic representation of hand limbs and an anatomically inspired composition strategy of mask synthesis. We conduct extensive studies on two public datasets - OneHand 10k and CMU Panoptic Hand. Experimental results demonstrate that explicitly enforcing structure learning consistently improves pose estimation accuracy of CPM baseline models, by 1.17% on the first dataset and 4.01% on the second one. The implementation and experiment code is freely available online. Our proposal of incorporating structural learning to hand pose estimation requires no additional training information, and can be a generic add-on module to other pose estimation models.Comment: The paper has be accepted and will be presented at 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). The code is freely available at https://github.com/HowieMa/NSRMhan

    Fast Monocular Hand Pose Estimation on Embedded Systems

    Full text link
    Hand pose estimation is a fundamental task in many human-robot interaction-related applications. However, previous approaches suffer from unsatisfying hand landmark predictions in real-world scenes and high computation burden. This paper proposes a fast and accurate framework for hand pose estimation, dubbed as "FastHand". Using a lightweight encoder-decoder network architecture, FastHand fulfills the requirements of practical applications running on embedded devices. The encoder consists of deep layers with a small number of parameters, while the decoder makes use of spatial location information to obtain more accurate results. The evaluation took place on two publicly available datasets demonstrating the improved performance of the proposed pipeline compared to other state-of-the-art approaches. FastHand offers high accuracy scores while reaching a speed of 25 frames per second on an NVIDIA Jetson TX2 graphics processing unit

    SIA-GCN: A Spatial Information Aware Graph Neural Network with 2D Convolutions for Hand Pose Estimation

    Full text link
    Graph Neural Networks (GNNs) generalize neural networks from applications on regular structures to applications on arbitrary graphs, and have shown success in many application domains such as computer vision, social networks and chemistry. In this paper, we extend GNNs along two directions: a) allowing features at each node to be represented by 2D spatial confidence maps instead of 1D vectors; and b) proposing an efficient operation to integrate information from neighboring nodes through 2D convolutions with different learnable kernels at each edge. The proposed SIA-GCN can efficiently extract spatial information from 2D maps at each node and propagate them through graph convolution. By associating each edge with a designated convolution kernel, the SIA-GCN could capture different spatial relationships for different pairs of neighboring nodes. We demonstrate the utility of SIA-GCN on the task of estimating hand keypoints from single-frame images, where the nodes represent the 2D coordinate heatmaps of keypoints and the edges denote the kinetic relationships between keypoints. Experiments on multiple datasets show that SIA-GCN provides a flexible and yet powerful framework to account for structural constraints between keypoints, and can achieve state-of-the-art performance on the task of hand pose estimation.Comment: 31st British Machine Vision Conference (BMVC), oral presentatio
    corecore