6,476 research outputs found

    Exponential Lower Bounds for Polytopes in Combinatorial Optimization

    Get PDF
    We solve a 20-year old problem posed by Yannakakis and prove that there exists no polynomial-size linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between one-way quantum communication protocols and semidefinite programming reformulations of LPs.Comment: 19 pages, 4 figures. This version of the paper will appear in the Journal of the ACM. The earlier conference version in STOC'12 had the title "Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds

    Descent methods for Nonnegative Matrix Factorization

    Full text link
    In this paper, we present several descent methods that can be applied to nonnegative matrix factorization and we analyze a recently developped fast block coordinate method called Rank-one Residue Iteration (RRI). We also give a comparison of these different methods and show that the new block coordinate method has better properties in terms of approximation error and complexity. By interpreting this method as a rank-one approximation of the residue matrix, we prove that it \emph{converges} and also extend it to the nonnegative tensor factorization and introduce some variants of the method by imposing some additional controllable constraints such as: sparsity, discreteness and smoothness.Comment: 47 pages. New convergence proof using damped version of RRI. To appear in Numerical Linear Algebra in Signals, Systems and Control. Accepted. Illustrating Matlab code is included in the source bundl

    On the Simulatability Condition in Key Generation Over a Non-authenticated Public Channel

    Full text link
    Simulatability condition is a fundamental concept in studying key generation over a non-authenticated public channel, in which Eve is active and can intercept, modify and falsify messages exchanged over the non-authenticated public channel. Using this condition, Maurer and Wolf showed a remarkable "all or nothing" result: if the simulatability condition does not hold, the key capacity over the non-authenticated public channel will be the same as that of the case with a passive Eve, while the key capacity over the non-authenticated channel will be zero if the simulatability condition holds. However, two questions remain open so far: 1) For a given joint probability mass function (PMF), are there efficient algorithms (polynomial complexity algorithms) for checking whether the simulatability condition holds or not?; and 2) If the simulatability condition holds, are there efficient algorithms for finding the corresponding attack strategy? In this paper, we answer these two open questions affirmatively. In particular, for a given joint PMF, we construct a linear programming (LP) problem and show that the simulatability condition holds \textit{if and only if} the optimal value obtained from the constructed LP is zero. Furthermore, we construct another LP and show that the minimizer of the newly constructed LP is a valid attack strategy. Both LPs can be solved with a polynomial complexity

    Using Underapproximations for Sparse Nonnegative Matrix Factorization

    Full text link
    Nonnegative Matrix Factorization consists in (approximately) factorizing a nonnegative data matrix by the product of two low-rank nonnegative matrices. It has been successfully applied as a data analysis technique in numerous domains, e.g., text mining, image processing, microarray data analysis, collaborative filtering, etc. We introduce a novel approach to solve NMF problems, based on the use of an underapproximation technique, and show its effectiveness to obtain sparse solutions. This approach, based on Lagrangian relaxation, allows the resolution of NMF problems in a recursive fashion. We also prove that the underapproximation problem is NP-hard for any fixed factorization rank, using a reduction of the maximum edge biclique problem in bipartite graphs. We test two variants of our underapproximation approach on several standard image datasets and show that they provide sparse part-based representations with low reconstruction error. Our results are comparable and sometimes superior to those obtained by two standard Sparse Nonnegative Matrix Factorization techniques.Comment: Version 2 removed the section about convex reformulations, which was not central to the development of our main results; added material to the introduction; added a review of previous related work (section 2.3); completely rewritten the last part (section 4) to provide extensive numerical results supporting our claims. Accepted in J. of Pattern Recognitio
    • …
    corecore