864 research outputs found

    Modularity functions maximization with nonnegative relaxation facilitates community detection in networks

    Full text link
    We show here that the problem of maximizing a family of quantitative functions, encompassing both the modularity (Q-measure) and modularity density (D-measure), for community detection can be uniformly understood as a combinatoric optimization involving the trace of a matrix called modularity Laplacian. Instead of using traditional spectral relaxation, we apply additional nonnegative constraint into this graph clustering problem and design efficient algorithms to optimize the new objective. With the explicit nonnegative constraint, our solutions are very close to the ideal community indicator matrix and can directly assign nodes into communities. The near-orthogonal columns of the solution can be reformulated as the posterior probability of corresponding node belonging to each community. Therefore, the proposed method can be exploited to identify the fuzzy or overlapping communities and thus facilitates the understanding of the intrinsic structure of networks. Experimental results show that our new algorithm consistently, sometimes significantly, outperforms the traditional spectral relaxation approaches

    Using Underapproximations for Sparse Nonnegative Matrix Factorization

    Full text link
    Nonnegative Matrix Factorization consists in (approximately) factorizing a nonnegative data matrix by the product of two low-rank nonnegative matrices. It has been successfully applied as a data analysis technique in numerous domains, e.g., text mining, image processing, microarray data analysis, collaborative filtering, etc. We introduce a novel approach to solve NMF problems, based on the use of an underapproximation technique, and show its effectiveness to obtain sparse solutions. This approach, based on Lagrangian relaxation, allows the resolution of NMF problems in a recursive fashion. We also prove that the underapproximation problem is NP-hard for any fixed factorization rank, using a reduction of the maximum edge biclique problem in bipartite graphs. We test two variants of our underapproximation approach on several standard image datasets and show that they provide sparse part-based representations with low reconstruction error. Our results are comparable and sometimes superior to those obtained by two standard Sparse Nonnegative Matrix Factorization techniques.Comment: Version 2 removed the section about convex reformulations, which was not central to the development of our main results; added material to the introduction; added a review of previous related work (section 2.3); completely rewritten the last part (section 4) to provide extensive numerical results supporting our claims. Accepted in J. of Pattern Recognitio

    Exact Clustering of Weighted Graphs via Semidefinite Programming

    Full text link
    As a model problem for clustering, we consider the densest k-disjoint-clique problem of partitioning a weighted complete graph into k disjoint subgraphs such that the sum of the densities of these subgraphs is maximized. We establish that such subgraphs can be recovered from the solution of a particular semidefinite relaxation with high probability if the input graph is sampled from a distribution of clusterable graphs. Specifically, the semidefinite relaxation is exact if the graph consists of k large disjoint subgraphs, corresponding to clusters, with weight concentrated within these subgraphs, plus a moderate number of outliers. Further, we establish that if noise is weakly obscuring these clusters, i.e, the between-cluster edges are assigned very small weights, then we can recover significantly smaller clusters. For example, we show that in approximately sparse graphs, where the between-cluster weights tend to zero as the size n of the graph tends to infinity, we can recover clusters of size polylogarithmic in n. Empirical evidence from numerical simulations is also provided to support these theoretical phase transitions to perfect recovery of the cluster structure

    Using underapproximations for sparse nonnegative matrix factorization

    Get PDF
    Nonnegative Matrix Factorization (NMF) has gathered a lot of attention in the last decade and has been successfully applied in numerous applications. It consists in the factorization of a nonnegative matrix by the product of two low-rank nonnegative matrices:. MªVW. In this paper, we attempt to solve NMF problems in a recursive way. In order to do that, we introduce a new variant called Nonnegative Matrix Underapproximation (NMU) by adding the upper bound constraint VW£M. Besides enabling a recursive procedure for NMF, these inequalities make NMU particularly well suited to achieve a sparse representation, improving the part-based decomposition. Although NMU is NP-hard (which we prove using its equivalence with the maximum edge biclique problem in bipartite graphs), we present two approaches to solve it: a method based on convex reformulations and a method based on Lagrangian relaxation. Finally, we provide some encouraging numerical results for image processing applications.nonnegative matrix factorization, underapproximation, maximum edge biclique problem, sparsity, image processing

    Guaranteed clustering and biclustering via semidefinite programming

    Get PDF
    Identifying clusters of similar objects in data plays a significant role in a wide range of applications. As a model problem for clustering, we consider the densest k-disjoint-clique problem, whose goal is to identify the collection of k disjoint cliques of a given weighted complete graph maximizing the sum of the densities of the complete subgraphs induced by these cliques. In this paper, we establish conditions ensuring exact recovery of the densest k cliques of a given graph from the optimal solution of a particular semidefinite program. In particular, the semidefinite relaxation is exact for input graphs corresponding to data consisting of k large, distinct clusters and a smaller number of outliers. This approach also yields a semidefinite relaxation for the biclustering problem with similar recovery guarantees. Given a set of objects and a set of features exhibited by these objects, biclustering seeks to simultaneously group the objects and features according to their expression levels. This problem may be posed as partitioning the nodes of a weighted bipartite complete graph such that the sum of the densities of the resulting bipartite complete subgraphs is maximized. As in our analysis of the densest k-disjoint-clique problem, we show that the correct partition of the objects and features can be recovered from the optimal solution of a semidefinite program in the case that the given data consists of several disjoint sets of objects exhibiting similar features. Empirical evidence from numerical experiments supporting these theoretical guarantees is also provided

    Efficient Semidefinite Spectral Clustering via Lagrange Duality

    Full text link
    We propose an efficient approach to semidefinite spectral clustering (SSC), which addresses the Frobenius normalization with the positive semidefinite (p.s.d.) constraint for spectral clustering. Compared with the original Frobenius norm approximation based algorithm, the proposed algorithm can more accurately find the closest doubly stochastic approximation to the affinity matrix by considering the p.s.d. constraint. In this paper, SSC is formulated as a semidefinite programming (SDP) problem. In order to solve the high computational complexity of SDP, we present a dual algorithm based on the Lagrange dual formalization. Two versions of the proposed algorithm are proffered: one with less memory usage and the other with faster convergence rate. The proposed algorithm has much lower time complexity than that of the standard interior-point based SDP solvers. Experimental results on both UCI data sets and real-world image data sets demonstrate that 1) compared with the state-of-the-art spectral clustering methods, the proposed algorithm achieves better clustering performance; and 2) our algorithm is much more efficient and can solve larger-scale SSC problems than those standard interior-point SDP solvers.Comment: 13 page
    corecore