100,104 research outputs found
Reduced-order Description of Transient Instabilities and Computation of Finite-Time Lyapunov Exponents
High-dimensional chaotic dynamical systems can exhibit strongly transient
features. These are often associated with instabilities that have finite-time
duration. Because of the finite-time character of these transient events, their
detection through infinite-time methods, e.g. long term averages, Lyapunov
exponents or information about the statistical steady-state, is not possible.
Here we utilize a recently developed framework, the Optimally Time-Dependent
(OTD) modes, to extract a time-dependent subspace that spans the modes
associated with transient features associated with finite-time instabilities.
As the main result, we prove that the OTD modes, under appropriate conditions,
converge exponentially fast to the eigendirections of the Cauchy--Green tensor
associated with the most intense finite-time instabilities. Based on this
observation, we develop a reduced-order method for the computation of
finite-time Lyapunov exponents (FTLE) and vectors. In high-dimensional systems,
the computational cost of the reduced-order method is orders of magnitude lower
than the full FTLE computation. We demonstrate the validity of the theoretical
findings on two numerical examples
CAutoCSD-evolutionary search and optimisation enabled computer automated control system design
This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of 'Computer-Aided Control System Design' (CACSD) to the novel 'Computer-Automated Control System Design' (CAutoCSD). The first step towards this goal is to accommodate, under practical constraints, various design objectives that are desirable in both time and frequency-domains. Such performance-prioritised unification is aimed to relieve practising engineers from having to select a particular control scheme and from sacrificing certain performance goals resulting from pre-committing to the adopted scheme.  With the recent progress in evolutionary computing based extra-numeric, multi-criterion search and optimisation techniques, such unification of LTI control schemes becomes feasible, analytically and practically, and the resultant designs can be creative.  The techniques developed are applied to, and illustrated by, three design problems.  The unified approach automatically provides an integrator for zero-steady state error in velocity control of a DC motor, meets multiple objectives in designing an LTI controller for a non-minimum phase plant and offers a high-performing LTI controller network for a nonlinear chemical process
Convective instability and transient growth in flow over a backward-facing step
Transient energy growths of two- and three-dimensional optimal linear perturbations to two-dimensional flow in a rectangular backward-facing-step geometry with expansion ratio two are presented. Reynolds numbers based on the step height and peak inflow speed are considered in the range 0–500, which is below the value for the onset of three-dimensional asymptotic instability. As is well known, the flow has a strong local convective instability, and the maximum linear transient energy growth values computed here are of order 80×103 at Re = 500. The critical Reynolds number below which there is no growth over any time interval is determined to be Re = 57.7 in the two-dimensional case. The centroidal location of the energy distribution for maximum transient growth is typically downstream of all the stagnation/reattachment points of the steady base flow. Sub-optimal transient modes are also computed and discussed. A direct study of weakly nonlinear effects demonstrates that nonlinearity is stablizing at Re = 500. The optimal three-dimensional disturbances have spanwise wavelength of order ten step heights. Though they have slightly larger growths than two-dimensional cases, they are broadly similar in character. When the inflow of the full nonlinear system is perturbed with white noise, narrowband random velocity perturbations are observed in the downstream channel at locations corresponding to maximum linear transient growth. The centre frequency of this response matches that computed from the streamwise wavelength and mean advection speed of the predicted optimal disturbance. Linkage between the response of the driven flow and the optimal disturbance is further demonstrated by a partition of response energy into velocity components
Steady state analysis of Chua's circuit with RLCG transmission line
In this paper we present a new technique to compute the steady state response of nonlinear autonomous circuits with RLCG transmission lines. Using multipoint Pade approximants, instead of the commonly used expansions around s=0 or s/spl rarr//spl infin/ accurate, low-order lumped equivalent circuits of the characteristic impedance and the exponential propagation function are obtained in an explicit way. Then, with the temporal discretization of the equations that describe the transformed circuit, we obtain a nonlinear algebraic formulation where the unknowns to be determined are the samples of the variables directly in the steady state, along with the oscillation period, the main unknown in autonomous circuits. An efficient scheme to build the Jacobian matrix with exact partial derivatives with respect to the oscillation period and with respect to the samples of the unknowns is obtained. Steady state solutions of the Chua's circuit with RLCG transmission line are computed for selected circuit parameters.Peer ReviewedPostprint (published version
- …
