14,302 research outputs found

    Dynamics of localized waves in 1D random potentials: statistical theory of the coherent forward scattering peak

    Full text link
    As recently discovered [PRL 109{\bf 109} 190601(2012)], Anderson localization in a bulk disordered system triggers the emergence of a coherent forward scattering (CFS) peak in momentum space, which twins the well-known coherent backscattering (CBS) peak observed in weak localization experiments. Going beyond the perturbative regime, we address here the long-time dynamics of the CFS peak in a 1D random system and we relate this novel interference effect to the statistical properties of the eigenfunctions and eigenspectrum of the corresponding random Hamiltonian. Our numerical results show that the dynamics of the CFS peak is governed by the logarithmic level repulsion between localized states, with a time scale that is, with good accuracy, twice the Heisenberg time. This is in perfect agreement with recent findings based on the nonlinear σ\sigma-model. In the stationary regime, the width of the CFS peak in momentum space is inversely proportional to the localization length, reflecting the exponential decay of the eigenfunctions in real space, while its height is exactly twice the background, reflecting the Poisson statistical properties of the eigenfunctions. Our results should be easily extended to higher dimensional systems and other symmetry classes.Comment: See the published article for the updated versio

    Computation of Spiral Spectra

    Full text link
    A computational linear stability analysis of spiral waves in a reaction-diffusion equation is performed on large disks. As the disk radius R increases, eigenvalue spectra converge to the absolute spectrum predicted by Sandstede and Scheel. The convergence rate is consistent with 1/R, except possibly near the edge of the spectrum. Eigenfunctions computed on large disks are compared with predicted exponential forms. Away from the edge of the absolute spectrum the agreement is excellent, while near the edge computed eigenfunctions deviate from predictions, probably due to finite-size effects. In addition to eigenvalues associated with the absolute spectrum, computations reveal point eigenvalues. The point eigenvalues and associated eigenfunctions responsible for both core and far-field breakup of spiral waves are shown.Comment: 20 pages, 13 figures, submitted to SIAD

    A minimization principle for the description of time-dependent modes associated with transient instabilities

    Full text link
    We introduce a minimization formulation for the determination of a finite-dimensional, time-dependent, orthonormal basis that captures directions of the phase space associated with transient instabilities. While these instabilities have finite lifetime they can play a crucial role by either altering the system dynamics through the activation of other instabilities, or by creating sudden nonlinear energy transfers that lead to extreme responses. However, their essentially transient character makes their description a particularly challenging task. We develop a minimization framework that focuses on the optimal approximation of the system dynamics in the neighborhood of the system state. This minimization formulation results in differential equations that evolve a time-dependent basis so that it optimally approximates the most unstable directions. We demonstrate the capability of the method for two families of problems: i) linear systems including the advection-diffusion operator in a strongly non-normal regime as well as the Orr-Sommerfeld/Squire operator, and ii) nonlinear problems including a low-dimensional system with transient instabilities and the vertical jet in crossflow. We demonstrate that the time-dependent subspace captures the strongly transient non-normal energy growth (in the short time regime), while for longer times the modes capture the expected asymptotic behavior

    Classical nonlinear response of a chaotic system: Langevin dynamics and spectral decomposition

    Full text link
    We consider the classical response of a strongly chaotic Hamiltonian system. The spectrum of such a system consists of discrete complex Ruelle-Pollicott (RP) resonances which manifest themselves in the behavior of the correlation and response functions. We interpret the RP resonances as the eigenstates and eigenvalues of the Fokker-Planck operator obtained by adding an infinitesimal noise term to the first-order Liouville operator. We demonstrate how the deterministic expression for the linear response is reproduced in the limit of vanishing noise. For the second-order response we establish an equivalence of the spectral decomposition with infinitesimal noise and the long-time asymptotic expansion for the deterministic case.Comment: 16 pages, 1 figur

    Very Singular Similarity Solutions and Hermitian Spectral Theory for Semilinear Odd-Order PDEs

    Full text link
    Very singular self-similar solutions of semilinear odd-order PDEs are studied on the basis of a Hermitian-type spectral theory for linear rescaled odd-order operators.Comment: 49 pages, 12 Figure
    • …
    corecore