2,810 research outputs found

    Predictive control using an FPGA with application to aircraft control

    Get PDF
    Alternative and more efficient computational methods can extend the applicability of MPC to systems with tight real-time requirements. This paper presents a “system-on-a-chip” MPC system, implemented on a field programmable gate array (FPGA), consisting of a sparse structure-exploiting primal dual interior point (PDIP) QP solver for MPC reference tracking and a fast gradient QP solver for steady-state target calculation. A parallel reduced precision iterative solver is used to accelerate the solution of the set of linear equations forming the computational bottleneck of the PDIP algorithm. A numerical study of the effect of reducing the number of iterations highlights the effectiveness of the approach. The system is demonstrated with an FPGA-inthe-loop testbench controlling a nonlinear simulation of a large airliner. This study considers many more manipulated inputs than any previous FPGA-based MPC implementation to date, yet the implementation comfortably fits into a mid-range FPGA, and the controller compares well in terms of solution quality and latency to state-of-the-art QP solvers running on a standard PC

    Constrained LQR for Low-Precision Data Representation

    Get PDF
    Performing computations with a low-bit number representation results in a faster implementation that uses less silicon, and hence allows an algorithm to be implemented in smaller and cheaper processors without loss of performance. We propose a novel formulation to efficiently exploit the low (or non-standard) precision number representation of some computer architectures when computing the solution to constrained LQR problems, such as those that arise in predictive control. The main idea is to include suitably-defined decision variables in the quadratic program, in addition to the states and the inputs, to allow for smaller roundoff errors in the solver. This enables one to trade off the number of bits used for data representation against speed and/or hardware resources, so that smaller numerical errors can be achieved for the same number of bits (same silicon area). Because of data dependencies, the algorithm complexity, in terms of computation time and hardware resources, does not necessarily increase despite the larger number of decision variables. Examples show that a 10-fold reduction in hardware resources is possible compared to using double precision floating point, without loss of closed-loop performance

    Custom optimization algorithms for efficient hardware implementation

    No full text
    The focus is on real-time optimal decision making with application in advanced control systems. These computationally intensive schemes, which involve the repeated solution of (convex) optimization problems within a sampling interval, require more efficient computational methods than currently available for extending their application to highly dynamical systems and setups with resource-constrained embedded computing platforms. A range of techniques are proposed to exploit synergies between digital hardware, numerical analysis and algorithm design. These techniques build on top of parameterisable hardware code generation tools that generate VHDL code describing custom computing architectures for interior-point methods and a range of first-order constrained optimization methods. Since memory limitations are often important in embedded implementations we develop a custom storage scheme for KKT matrices arising in interior-point methods for control, which reduces memory requirements significantly and prevents I/O bandwidth limitations from affecting the performance in our implementations. To take advantage of the trend towards parallel computing architectures and to exploit the special characteristics of our custom architectures we propose several high-level parallel optimal control schemes that can reduce computation time. A novel optimization formulation was devised for reducing the computational effort in solving certain problems independent of the computing platform used. In order to be able to solve optimization problems in fixed-point arithmetic, which is significantly more resource-efficient than floating-point, tailored linear algebra algorithms were developed for solving the linear systems that form the computational bottleneck in many optimization methods. These methods come with guarantees for reliable operation. We also provide finite-precision error analysis for fixed-point implementations of first-order methods that can be used to minimize the use of resources while meeting accuracy specifications. The suggested techniques are demonstrated on several practical examples, including a hardware-in-the-loop setup for optimization-based control of a large airliner.Open Acces

    Computer Architectures to Close the Loop in Real-time Optimization

    Get PDF
    © 2015 IEEE.Many modern control, automation, signal processing and machine learning applications rely on solving a sequence of optimization problems, which are updated with measurements of a real system that evolves in time. The solutions of each of these optimization problems are then used to make decisions, which may be followed by changing some parameters of the physical system, thereby resulting in a feedback loop between the computing and the physical system. Real-time optimization is not the same as fast optimization, due to the fact that the computation is affected by an uncertain system that evolves in time. The suitability of a design should therefore not be judged from the optimality of a single optimization problem, but based on the evolution of the entire cyber-physical system. The algorithms and hardware used for solving a single optimization problem in the office might therefore be far from ideal when solving a sequence of real-time optimization problems. Instead of there being a single, optimal design, one has to trade-off a number of objectives, including performance, robustness, energy usage, size and cost. We therefore provide here a tutorial introduction to some of the questions and implementation issues that arise in real-time optimization applications. We will concentrate on some of the decisions that have to be made when designing the computing architecture and algorithm and argue that the choice of one informs the other

    Predictive control using an FPGA with application to aircraft control

    Get PDF
    Alternative and more efficient computational methods can extend the applicability of MPC to systems with tight real-time requirements. This paper presents a ``system-on-a-chip'' MPC system, implemented on a field programmable gate array (FPGA), consisting of a sparse structure-exploiting primal dual interior point (PDIP) QP solver for MPC reference tracking and a fast gradient QP solver for steady-state target calculation. A parallel reduced precision iterative solver is used to accelerate the solution of the set of linear equations forming the computational bottleneck of the PDIP algorithm. A numerical study of the effect of reducing the number of iterations highlights the effectiveness of the approach. The system is demonstrated with an FPGA-in-the-loop testbench controlling a nonlinear simulation of a large airliner. This study considers many more manipulated inputs than any previous FPGA-based MPC implementation to date, yet the implementation comfortably fits into a mid-range FPGA, and the controller compares well in terms of solution quality and latency to state-of-the-art QP solvers running on a standard PC.This work was supported by EPSRC (Grants EP/G030308/1, EP/G031576/1 and EP/I012036/1) and the EU FP7 Project EMBOCON grant agreement number FP7-ICT-2009-4 248940, as well as industrial support from Xilinx, the Mathworks, and the European Space Agency.This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. The final version of record is available at: http://dx.doi.org/10.1109/TCST.2013.2271791. Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing [email protected]

    Predictive control for spacecraft rendezvous in an elliptical orbit using an FPGA

    Get PDF
    A field programmable gate array (FPGA)-based predictive controller for a spacecraft rendezvous man{\oe}uvre is presented. A linear time varying prediction model is used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of man{\oe}uvres. The resulting constrained optimisation problems are solved using a primal dual interior point algorithm. The majority of the computational demand is in solving a set of linear equations at each iteration of this algorithm. To accelerate this operation, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft core processor. The system is demonstrated in closed loop by linking the FPGA with a simulation of the plant dynamics running in Simulink on a PC, using Ethernet.This work was supported by the Engineering and Physical Sciences Research Council (Grant EP/G030308/1) as well as industrial support from Xilinx, Mathworks and the European Space Agency.European Control Conference 2013 (ECC13), July 17-19, Zurich, Switzerlan

    A low complexity scaling method for the Lanczos Kernel in fixed-point arithmetic

    No full text
    We consider the problem of enabling fixed-point implementation of linear algebra kernels on low-cost embedded systems, as well as motivating more efficient computational architectures for scientific applications. Fixed-point arithmetic presents additional design challenges compared to floating-point arithmetic, such as having to bound peak values of variables and control their dynamic ranges. Algorithms for solving linear equations or finding eigenvalues are typically nonlinear and iterative, making solving these design challenges a nontrivial task. For these types of algorithms, the bounding problem cannot be automated by current tools. We focus on the Lanczos iteration, the heart of well-known methods such as conjugate gradient and minimum residual. We show how one can modify the algorithm with a low-complexity scaling procedure to allow us to apply standard linear algebra to derive tight analytical bounds on all variables of the process, regardless of the properties of the original matrix. It is shown that the numerical behavior of fixed-point implementations of the modified problem can be chosen to be at least as good as a floating-point implementation, if necessary. The approach is evaluated on field-programmable gate array (FPGA) platforms, highlighting orders of magnitude potential performance and efficiency improvements by moving form floating-point to fixed-point computation
    corecore