3 research outputs found

    Asymptotically Optimal Blind Calibration of Uniform Linear Sensor Arrays for Narrowband Gaussian Signals

    Full text link
    An asymptotically optimal blind calibration scheme of uniform linear arrays for narrowband Gaussian signals is proposed. Rather than taking the direct Maximum Likelihood (ML) approach for joint estimation of all the unknown model parameters, which leads to a multi-dimensional optimization problem with no closed-form solution, we revisit Paulraj and Kailath's (P-K's) classical approach in exploiting the special (Toeplitz) structure of the observations' covariance. However, we offer a substantial improvement over P-K's ordinary Least Squares (LS) estimates by using asymptotic approximations in order to obtain simple, non-iterative, (quasi-)linear Optimally-Weighted LS (OWLS) estimates of the sensors gains and phases offsets with asymptotically optimal weighting, based only on the empirical covariance matrix of the measurements. Moreover, we prove that our resulting estimates are also asymptotically optimal w.r.t. the raw data, and can therefore be deemed equivalent to the ML Estimates (MLE), which are otherwise obtained by joint ML estimation of all the unknown model parameters. After deriving computationally convenient expressions of the respective Cram\'er-Rao lower bounds, we also show that our estimates offer improved performance when applied to non-Gaussian signals (and/or noise) as quasi-MLE in a similar setting. The optimal performance of our estimates is demonstrated in simulation experiments, with a considerable improvement (reaching an order of magnitude and more) in the resulting mean squared errors w.r.t. P-K's ordinary LS estimates. We also demonstrate the improved accuracy in a multiple-sources directions-of-arrivals estimation task.Comment: in IEEE Transactions on Signal Processin

    A survey on sensor calibration in air pollution monitoring deployments

    Get PDF

    Nonlinear mobile sensor calibration using informed semi-nonnegative matrix factorization with a Vandermonde factor

    No full text
    International audienceIn this paper we aim to blindly calibrate a mobile sensor network whose sensor outputs and the sensed phenomenon are linked by a polynomial relationship. The proposed approach is based on a novel informed semi-nonnegative matrix factorization with a Vandermonde factor matrix. The proposed approach outperforms a matrix-completion-based method in a crowdsensing-like simulation of particulate matter sensing
    corecore