360,953 research outputs found
Development Of The Search Method For Non-linear Shift Registers Using Hardware, Implemented On Field Programmable Gate Arrays
The nonlinear feedback shift registers of the second order inare considered, because based on them it can be developed a generator of stream ciphers with enhanced cryptographic strength.Feasibility of nonlinear feedback shift register search is analyzed. These registers form a maximal length sequence, using programmable logic devices.Performance evaluation of programmable logic devices in the generation of pseudo-random sequence by nonlinear feedback shift registers is given. Recommendations to increase this performance are given. The dependence of the maximum generation rate (clock frequency), programmable logic devices on the number of concurrent nonlinear registers is analyzed.A comparison of the generation rate of the sequences that are generated by nonlinear feedback shift registers is done using hardware and software.The author suggests, describes and explores the search method of nonlinear feedback shift registers, generating a sequence with a maximum period. As the main result are found non-linear 26, 27, 28 and 29 degrees polynomials
A State-Space Approach to Parametrization of Stabilizing Controllers for Nonlinear Systems
A state-space approach to Youla-parametrization of stabilizing controllers for linear and nonlinear systems is suggested. The stabilizing controllers (or a class of stabilizing controllers for nonlinear systems) are characterized as (linear/nonlinear) fractional transformations of stable parameters. The main idea behind this approach is to decompose the output feedback stabilization problem into state feedback and state estimation problems. The parametrized output feedback controllers have separation structures. A separation principle follows from the construction. This machinery allows the parametrization of stabilizing controllers to be conducted directly in state space without using coprime-factorization
ℋ∞ control of nonlinear systems via output feedback: controller parameterization
The standard state space solutions to the ℋ∞ control problem for linear time invariant systems are generalized to nonlinear time-invariant systems. A class of local nonlinear (output feedback) ℋ∞ controllers are parameterized as nonlinear fractional transformations on contractive, stable nonlinear parameters. As in the linear case, the ℋ∞ control problem is solved by its reduction to state feedback and output estimation problems, together with a separation argument. Sufficient conditions for ℋ∞-control problem to be locally solved are also derived with this machinery
Dissipative solitons in pattern-forming nonlinear optical systems : cavity solitons and feedback solitons
Many dissipative optical systems support patterns. Dissipative solitons are generally found where a pattern coexists with a stable unpatterned state. We consider such phenomena in driven optical cavities containing a nonlinear medium (cavity solitons) and rather similar phenomena (feedback solitons) where a driven nonlinear optical medium is in front of a single feedback mirror. The history, theory, experimental status, and potential application of such solitons is reviewed
Anharmonic resonances with recursive delay feedback
We consider application of the multiple time delayed feedback for control of
anharmonic (nonlinear) oscillators subject to noise. In contrast to the case of
a single delay feedback, the multiple one exhibits resonances between feedback
and nonlinear harmonics, leading to a resonantly strong or weak oscillation
coherence even for a small anharmonicity. Analytical results are confirmed
numerically for van der Pol and van der Pol-Duffing oscillators.
Highlights: > We construct general theory of noisy limit-cycle oscillators
with linear feedback. > We focus on coherence and "reliability" of oscillators.
> For recursive delay feedback control the theory shows importance of
anharmonicity. > Anharmonic resonances are studied both numerically and
analytically.Comment: 6 pages, 4 figures, +Maple program and its pdf-print, submitted to
Physics Letters
- …
