296 research outputs found

    Boundary tracking and source seeking of oceanic features using autonomous vehicles

    Get PDF
    The thesis concerns the study and the development of boundary tracking and source seeking approaches for autonomous vehicles, specifically for marine autonomous systems. The underlying idea is that the characterization of most environmental features can be posed from either a boundary tracking or a source seeking perspective. The suboptimal sliding mode boundary tracking approach is considered and, as a first contribution, it is extended to the study of three dimensional features. The approach is aimed at controlling the movement of an underwater glider tracking a three-dimensional underwater feature and it is validated in a simulated environment. Subsequently, a source seeking approach based on sliding mode extremum seeking ideas is proposed. This approach is developed for the application to a single surface autonomous vehicle, seeking the source of a static or dynamic two dimensional spatial field. A sufficient condition which guarantees the finite time convergence to a neighbourhood of the source is introduced. Furthermore, a probabilistic learning boundary tracking approach is proposed, aimed at exploiting the available preliminary information relating to the spatial phenomenon of interest in the control strategy. As an additional contribution, the sliding mode boundary tracking approach is experimentally validated in a set of sea-trials with the deployment of a surface autonomous vehicle. Finally, an embedded system implementing the proposed boundary tracking strategy is developed for future installation on board of the autonomous vehicle. This work demonstrates the possibility to perform boundary tracking with a fully autonomous vehicle and to operate marine autonomous systems without remote control or pre-planning. Conclusions are drawn from the results of the research presented in this thesis and directions for future work are identified

    Empowering wave energy with control technology: Possibilities and pitfalls

    Get PDF
    With an increasing focus on climate action and energy security, an appropriate mix of renewable energy technologies is imperative. Despite having considerable global potential, wave energy has still not reached a state of maturity or economic competitiveness to have made an impact. Challenges include the high capital and operational costs associated with deployment in the harsh ocean environment, so it is imperative that the full energy harnessing capacity of wave energy devices, and arrays of devices in farms, is realised. To this end, control technology has an important role to play in maximising power capture, while ensuring that physical system constraints are respected, and control actions do not adversely affect device lifetime. Within the gamut of control technology, a variety of tools can be brought to bear on the wave energy control problem, including various control strategies (optimal, robust, nonlinear, etc.), data-based model identification, estimation, and forecasting. However, the wave energy problem displays a number of unique features which challenge the traditional application of these techniques, while also presenting a number of control ‘paradoxes’. This review articulates the important control-related characteristics of the wave energy control problem, provides a survey of currently applied control and control-related techniques, and gives some perspectives on the outstanding challenges and future possibilities. The emerging area of control co-design, which is especially relevant to the relatively immature area of wave energy system design, is also covered

    Neural networks in feedback for flow analysis, sensor placement and control

    Full text link
    This work presents a novel methodology for analysis and control of nonlinear fluid systems using neural networks. The approach is demonstrated on four different study cases being the Lorenz system, a modified version of the Kuramoto-Sivashinsky equation, a streamwise-periodic 2D channel flow, and a confined cylinder flow. Neural networks are trained as models to capture the complex system dynamics and estimate equilibrium points through a Newton method, enabled by backpropagation. These neural network surrogate models (NNSMs) are leveraged to train a second neural network, which is designed to act as a stabilizing closed-loop controller. The training process employs a recurrent approach, whereby the NNSM and the neural network controller (NNC) are chained in closed loop along a finite time horizon. By cycling through phases of combined random open-loop actuation and closed-loop control, an iterative training process is introduced to overcome the lack of data near equilibrium points. This approach improves the accuracy of the models in the most critical region for achieving stabilization. Through the use of L1 regularization within loss functions, the NNSMs can also guide optimal sensor placement, reducing the number of sensors from an initial candidate set. The datasets produced during the iterative training process are also leveraged for conducting a linear stability analysis through a modified dynamic mode decomposition approach. The results demonstrate the effectiveness of computationally inexpensive neural networks in modeling, controlling, and enabling stability analysis of nonlinear systems, providing insights into the system behaviour and offering potential for stabilization of complex fluid systems.Comment: 30 pages, 22 figures, under consideration for publicatio

    Model-Guided Data-Driven Optimization and Control for Internal Combustion Engine Systems

    Get PDF
    The incorporation of electronic components into modern Internal Combustion, IC, engine systems have facilitated the reduction of fuel consumption and emission from IC engine operations. As more mechanical functions are being replaced by electric or electronic devices, the IC engine systems are becoming more complex in structure. Sophisticated control strategies are called in to help the engine systems meet the drivability demands and to comply with the emission regulations. Different model-based or data-driven algorithms have been applied to the optimization and control of IC engine systems. For the conventional model-based algorithms, the accuracy of the applied system models has a crucial impact on the quality of the feedback system performance. With computable analytic solutions and a good estimation of the real physical processes, the model-based control embedded systems are able to achieve good transient performances. However, the analytic solutions of some nonlinear models are difficult to obtain. Even if the solutions are available, because of the presence of unavoidable modeling uncertainties, the model-based controllers are designed conservatively

    Simulation And Control At the Boundaries Between Humans And Assistive Robots

    Get PDF
    Human-machine interaction has become an important area of research as progress is made in the fields of rehabilitation robotics, powered prostheses, and advanced exercise machines. Adding to the advances in this area, a novel controller for a powered transfemoral prosthesis is introduced that requires limited tuning and explicitly considers energy regeneration. Results from a trial conducted with an individual with an amputation show self-powering operation for the prosthesis while concurrently attaining basic gait fidelity across varied walking speeds. Experience in prosthesis development revealed that, though every effort is made to ensure the safety of the human subject, limited testing of such devices prior to human trials can be completed in the current research environment. Two complementary alternatives are developed to fill that gap. First, the feasibility of implementing impulse-momentum sliding mode control on a robot that can physically replace a human with a transfemoral amputation to emulate weight-bearing for initial prototype walking tests is established. Second, a more general human simulation approach is proposed that can be used in any of the aforementioned human-machine interaction fields. Seeking this general human simulation method, a unique pair of solutions for simulating a Hill muscle-actuated linkage system is formulated. These include using the Lyapunov-based backstepping control method to generate a closed-loop tracking simulation and, motivated by limitations observed in backstepping, an optimal control solver based on differential flatness and sum of squares polynomials in support of receding horizon controlled (e.g. model predictive control) or open-loop simulations. v The backstepping framework provides insight into muscle redundancy resolution. The optimal control framework uses this insight to produce a computationally efficient approach to musculoskeletal system modeling. A simulation of a human arm is evaluated in both structures. Strong tracking performance is achieved in the backstepping case. An exercise optimization application using the optimal control solver showcases the computational benefits of the solver and reveals the feasibility of finding trajectories for human-exercise machine interaction that can isolate a muscle of interest for strengthening

    Extremum-Seeking Guidance and Conic-Sector-Based Control of Aerospace Systems

    Full text link
    This dissertation studies guidance and control of aerospace systems. Guidance algorithms are used to determine desired trajectories of systems, and in particular, this dissertation examines constrained extremum-seeking guidance. This type of guidance is part of a class of algorithms that drives a system to the maximum or minimum of a performance function, where the exact relation between the function's input and output is unknown. This dissertation abstracts the problem of extremum-seeking to constrained matrix manifolds. Working with a constrained matrix manifold necessitates mathematics other than the familiar tools of linear systems. The performance function is optimized on the manifold by estimating a gradient using a Kalman filter, which can be modified to accommodate a wide variety of constraints and can filter measurement noise. A gradient-based optimization technique is then used to determine the extremum of the performance function. The developed algorithms are applied to aircraft and spacecraft. Control algorithms determine which system inputs are required to drive the systems outputs to follow the trajectory given by guidance. Aerospace systems are typically nonlinear, which makes control more challenging. One approach to control nonlinear systems is linear parameter varying (LPV) control, where well-established linear control techniques are extended to nonlinear systems. Although LPV control techniques work quite well, they require an LPV model of a system. This model is often an approximation of the real nonlinear system to be controlled, and any stability and performance guarantees that are derived using the system approximation are usually void on the real system. A solution to this problem can be found using the Passivity Theorem and the Conic Sector Theorem, two input-output stability theories, to synthesize LPV controllers. These controllers guarantee closed-loop stability even in the presence of system approximation. Several control techniques are derived and implemented in simulation and experimentation, where it is shown that these new controllers are robust to plant uncertainty.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143993/1/aexwalsh_1.pd

    Contribution à l’amélioration des performances d’un système de dessalement d’eau alimenté par une source photovoltaïque

    Get PDF
    Cette thèse présente une étude visant à améliorer l'efficacité d'un système de dessalement d’eau en utilisant une source photovoltaïque. Cette amélioration a été réalisée en appliquant l’ESC côté PV, la DTC 12 sectors côté motopompe et l'optimisation côté membrane dans des conditions climatiques saines et ombragées. L'étude a impliqué la conception et la mise en oeuvre d’un prototype de système de dessalement d'eau qui utilise une source d'énergie photovoltaïque. Les performances du système ont été évaluées en mesurant son taux de rejet de sel et sa consommation d'énergie spécifique. Les résultats ont montré que l'augmentation du débit d'eau saumâtre et l'amélioration des contrôles sur le côté PV et motopompe a considérablement amélioré les performances du système. L'étude a conclu que l'utilisation d'une source d'énergie photovoltaïque pour un système de dessalement de l'eau est une approche prometteuse pour répondre aux défis de la pénurie d'eau, en particulier dans les zones où l'électricité n'est pas facilement disponible. Cette approche peut réduire l'empreinte carbone associée aux méthodes traditionnelles de dessalement de l'eau et avoir un impact positif sur l'environnement. La recherche fournit des indications précieuses pour la conception et l'optimisation des systèmes de dessalement d'eau alimentés par l'énergie photovoltaïque, contribuant à la gestion durable des ressources en eau

    Image segmentation and edge enhancement with stabilized inverse diffusion equations

    Get PDF
    Caption title.Includes bibliographical references (p. 24-25).Supported by AFSOR. F49620-95-1-0083 Supported by ONR. N00014-91-J-1004 Supported in part by Boston University under the AFOSR Multidisciplinary Research Program on Reduced Signature Target Recognition. GC123919NGDIlya Pollak, Alan S. Willsky, Hamid Krim

    Energy Optimization of Smart Water Systems using UAV Enabled Zero-Power Wireless Communication Networks

    Get PDF
    Real-time energy consumption is a crucial consideration when assessing the effectiveness and efficiency of communication using energy hungry devices. Utilizing new technologies such as UAV-enabled wireless powered communication networks (WPCN) and 3D beamforming, and then a combination of static and dynamic optimization methodologies are combined to improve energy usage in water distribution systems (WDS). A proposed static optimization technique termed the Dome packing method and dynamic optimization methods such as extremum seeking are employed to generate optimum placement and trajectories of the UAV with respect to the ground nodes (GN) in a WDS. In this thesis, a wireless communication network powered by a UAV serves as a hybrid access point to manage many GNsin WDS. The GNs are water quality sensors that collect radio frequency (RF) energy from the RF signals delivered by the UAV and utilise this energy to relay information via an uplink. Optimum strategies are demonstrated to efficiently handle this process as part of a zero-power system: removing the need for manual battery charging of devices, while at the same time optimizing energy and data transfer over WPCN. Since static optimization does not account for the UAV's dynamics, dynamic optimization techniques are also necessary. By developing an efficient trajectory, the suggested technique also reduces the overall flying duration and, therefore, the UAV's energy consumption. This combination of techniques also drastically reduces the complexity and calculation overhead of purely high order static optimizations. To test and validate the efficacy of the extremum seeking implementation, comparison with the optimal sliding mode technique is also undertaken. These approaches are applied to ten distinct case studies by randomly relocating the GNs to various positions. The findings from a random sample of four of these is presented, which reveal that the proposed strategy reduces the UAV's energy usage significantly by about 16 percent compared to existing methods. The (hybrid) static and dynamic zero-power optimization strategies demonstrated here are readily extendable to the control of water quality and pollution in natural freshwater resources and this will be discussed at the end of this thesis
    • …
    corecore