137,676 research outputs found

    Nonlinear elasticity of monolayer graphene

    Full text link
    By combining continuum elasticity theory and tight-binding atomistic simulations, we work out the constitutive nonlinear stress-strain relation for graphene stretching elasticity and we calculate all the corresponding nonlinear elastic moduli. Present results represent a robust picture on elastic behavior of one-atom thick carbon sheets and provide the proper interpretation of recent experiments. In particular, we discuss the physical meaning of the effective nonlinear elastic modulus there introduced and we predict its value in good agreement with available data. Finally, a hyperelastic softening behavior is observed and discussed, so determining the failure properties of graphene.Comment: 4 page

    Solitary and compact-like shear waves in the bulk of solids

    Get PDF
    We show that a model proposed by Rubin, Rosenau, and Gottlieb [J. Appl. Phys. 77 (1995) 4054], for dispersion caused by an inherent material characteristic length, belongs to the class of simple materials. Therefore, it is possible to generalize the idea of Rubin, Rosenau, and Gottlieb to include a wide range of material models, from nonlinear elasticity to turbulence. Using this insight, we are able to fine-tune nonlinear and dispersive effects in the theory of nonlinear elasticity in order to generate pulse solitary waves and also bulk travelling waves with compact support

    Nonlinear Elasticity in Biological Gels

    Full text link
    Unlike most synthetic materials, biological materials often stiffen as they are deformed. This nonlinear elastic response, critical for the physiological function of some tissues, has been documented since at least the 19th century, but the molecular structure and the design principles responsible for it are unknown. Current models for this response require geometrically complex ordered structures unique to each material. In this Article we show that a much simpler molecular theory accounts for strain stiffening in a wide range of molecularly distinct biopolymer gels formed from purified cytoskeletal and extracellular proteins. This theory shows that systems of semi-flexible chains such as filamentous proteins arranged in an open crosslinked meshwork invariably stiffen at low strains without the need for a specific architecture or multiple elements with different intrinsic stiffnesses.Comment: 23 pages, 5 figures, submitted to Natur

    Nonlinear elasticity of disordered fiber networks

    Full text link
    Disordered biopolymer gels have striking mechanical properties including strong nonlinearities. In the case of athermal gels (such as collagen-I) the nonlinearity has long been associated with a crossover from a bending dominated to a stretching dominated regime of elasticity. The physics of this crossover is related to the existence of a central-force isostatic point and to the fact that for most gels the bending modulus is small. This crossover induces scaling behavior for the elastic moduli. In particular, for linear elasticity such a scaling law has been demonstrated [Broedersz et al. Nature Physics, 2011 7, 983]. In this work we generalize the scaling to the nonlinear regime with a two-parameter scaling law involving three critical exponents. We test the scaling law numerically for two disordered lattice models, and find a good scaling collapse for the shear modulus in both the linear and nonlinear regimes. We compute all the critical exponents for the two lattice models and discuss the applicability of our results to real systems.Comment: 7 pages, 5 figure

    Nonlinear Elasticity of the Sliding Columnar Phase

    Full text link
    The sliding columnar phase is a new liquid-crystalline phase of matter composed of two-dimensional smectic lattices stacked one on top of the other. This phase is characterized by strong orientational but weak positional correlations between lattices in neighboring layers and a vanishing shear modulus for sliding lattices relative to each other. A simplified elasticity theory of the phase only allows intralayer fluctuations of the columns and has three important elastic constants: the compression, rotation, and bending moduli, BB, KyK_y, and KK. The rotationally invariant theory contains anharmonic terms that lead to long wavelength renormalizations of the elastic constants similar to the Grinstein-Pelcovits renormalization of the elastic constants in smectic liquid crystals. We calculate these renormalizations at the critical dimension d=3d=3 and find that Ky(q)K1/2(q)B1/3(q)(ln(1/q))1/4K_y(q) \sim K^{1/2}(q) \sim B^{-1/3}(q) \sim (\ln(1/q))^{1/4}, where qq is a wavenumber. The behavior of BB, KyK_y, and KK in a model that includes fluctuations perpendicular to the layers is identical to that of the simple model with rigid layers. We use dimensional regularization rather than a hard-cutoff renormalization scheme because ambiguities arise in the one-loop integrals with a finite cutoff.Comment: This file contains 18 pages of double column text in REVTEX format and 6 postscript figure
    corecore