1,642 research outputs found
Competing source and loss mechanisms due to wave-particle interactions in Earth’s outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm
Abstract Drastic variations of Earth’s outer radiation belt electrons ultimately result from various competing source, loss, and transport processes, to which wave-particle interactions are critically important. Using 15 spacecraft including NASA’s Van Allen Probes, THEMIS, and SAMPEX missions and NOAA’s GOES and POES constellations, we investigated the evolution of the outer belt during the strong geomagnetic storm of 30 September to 3 October 2012. This storm’s main phase dropout exhibited enhanced losses to the atmosphere at L*\u3c 4, where the phase space density (PSD) of multi-MeV electrons dropped by over an order of magnitude in1 MeV electrons and energetic protons, SAMPEX \u3e1 MeV electrons, and ground observations of band-limited Pc1-2 wave activity, we show that this sudden loss was consistent with pitch angle scattering by electromagnetic ion cyclotron waves in the dusk magnetic local time sector at 3\u3c L*\u3c 4. At 4\u3c L*\u3c 5, local acceleration was also active during the main and early recovery phases, when growing peaks in electron PSD were observed by both Van Allen Probes and THEMIS. This acceleration corresponded to the period when IMF Bz was southward, the AE index was \u3e300 nT, and energetic electron injections and whistler-mode chorus waves were observed throughout the inner magnetosphere for \u3e12 h. After this period, Bz turned northward, and injections, chorus activity, and enhancements in PSD ceased. Overall, the outer belt was depleted by this storm. From the unprecedented level of observations available, we show direct evidence of the competitive nature of different wave-particle interactions controlling relativistic electron fluxes in the outer radiation belt
Observations of Radiation Belt Losses Due to Cyclotron Wave-Particle Interactions
Electron loss to the atmosphere plays a critical role in driving dynamics of the Earths Van Allen radiation belts and slot region. This is a review of atmospheric loss of radiation belt electrons caused by plasma wave scattering via Doppler-shifted cyclotron resonance. In particular, the focus is on observational signatures of electron loss, which include direct measurements of precipitating electrons, measured properties of waves that drive precipitation, and variations in the trapped population resulting from loss. We discuss wave and precipitation measurements from recent missions, including simultaneous multi-payload observations, which have provided new insight into the dynamic nature of the radiation belts
Survey Analysis of Chorus Intensity at Saturn
In order to conduct theoretical studies or modeling of pitch angle scattering of electrons by whistler mode chorus emission at Saturn, a knowledge of chorus occurrence and magnetic intensity levels, PB, as well as the distribution of PB relative to frequency and spatial parameters is essential. In this paper an extensive survey of whistler mode magnetic intensity levels at Saturn is carried out, and Gaussian fits of PB are performed. We fit the spectrum of wave magnetic intensity between the lower hybrid frequency and fceq/2, and for frequencies in the interval fceq/2 < f <0.9 fceq, where fceq is the cyclotron frequency mapped to the equator. Saturn chorus is observed over most local times, but is dominant on the nightside in the range 4.5 < L <7.5, with minimum power at the equator and peak power in the range 5° < λ <10°. Saturn wave magnetic intensity averaged in frequency bins peaks in the range 10-5 < PB <10-4 nT2 for 0.4 < β <0.5 (β = f/fceq). Gaussian fits of PB with frequency and latitude are obtained for lower band chorus. Plasma injection regions are occasionally encountered with significant chorus power levels. Upper band chorus is seen almost exclusively within plasma injection regions, and the number of events is very limited, but when present, the average levels of PB can be higher than lower band chorus. The overall magnetic intensity contribution of the upper band, however, is insignificant relative to the lower band
The Earth as a living planet: human-type diseases in the earthquake preparation process
The new field of complex systems supports the view that a number of systems
arising from disciplines as diverse as physics, biology, engineering, and
economics may have certain quantitative features that are intriguingly similar.
The earth is a living planet where many complex systems run perfectly without
stopping at all. The earthquake generation is a fundamental sign that the earth
is a living planet. Recently, analyses have shown that human-brain-type disease
appears during the earthquake generation process. Herein, we show that
human-heart-type disease appears during the earthquake preparation of the
earthquake process. The investigation is mainly attempted by means of critical
phenomena, which have been proposed as the likely paradigm to explain the
origins of both heart electric fluctuations and fracture induced
electromagnetic fluctuations. We show that a time window of the damage
evolution within the heterogeneous Earth's crust and the healthy heart's
electrical action present the characteristic features of the critical point of
a thermal second order phase transition. A dramatic breakdown of critical
characteristics appears in the tail of the fracture process of heterogeneous
system and the injury heart's electrical action. Analyses by means of Hurst
exponent and wavelet decomposition further support the hypothesis that a
dynamical analogy exists between the geological and biological systems under
study
Source of the Bursty Bulk Flow Diffuse Aurora: Electrostatic Cyclotron Harmonic and Whistler Waves in the Coupling of Bursty Bulk Flows to Auroral Precipitation
Electron cyclotron harmonic (ECH) and whistler chorus waves are recognized as the two mechanisms responsible for the resonant waveparticle interactions necessary to precipitate plasma sheet electrons into the ionosphere, producing the diffuse Aurora. Previous work has demonstrated ECH waves dominate electron scattering at L shells >8, while whistler chorus dominates scattering at L shells L 1, consistent with electron betatron acceleration. Here, however, we nd whistler chorus emissions throughout an interval of fast ows where Te,/Te,||< 1. Parallel electron beams account for the enhanced parallel electron temperature and serve as the instability mechanism for the whistler chorus. The parallel electron beams and associated cigarshaped distributions are consistent with Fermi acceleration at dipolarizations in fast ows. We demonstrate that the scattering efciency of the whistler chorus exceeds that of ECH waves, which THEMIS also detects during the fast ows. The obliquity of the whistler waves permits efcient scattering of lowerenergy electrons into the diffuse aurora. We conclude that Fermi acceleration of electrons provides one important freeenergy source for the waveparticle interactions responsible for coupling plasma sheet electrons into the diffuse aurora during substorm conditions
Research in space physics at the University of Iowa, 1982
The energetic particles and the electric, magnetic, and electromagnetic fields associated with the Earth, the Sun, the Moon, the planets, comets, and the interplanetary medium are examined. Matters under current investigation are following: energetic particles trapped in the Earth's magnetic field, origin and propagation of very low frequency radio waves and electrostatic, the magnetospheres of Jupiter, Saturn and prospectively Uranus and Neptune, diffusion of energetic particles in Saturn's magnetosphere, radio emissions from Jupiter and Saturn, solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays, interplanetary propagation and acceleration of energetic particles, the theory of wave phenomena in turbulent plasmas, and basic wave-particle-chemical processes in the ionospheric plasma
The origin of Jupiter's outer radiation belt
The intense inner radiation belt at Jupiter (>50 MeV at 1.5 RJ) is generally accepted to be created by radial diffusion of electrons from further away from the planet. However, this requires a source with energies that exceed 1 MeV outside the orbit of the moon Io at 5.9 RJ, which has never been explained satisfactorily. Here we test the hypothesis that this source population could be formed from a very soft energy spectrum, by particle injection processes and resonant electron acceleration via whistler mode chorus waves. We use the British Antarctic Survey Radiation Belt Model to calculate the change in the electron flux between 6.5 and 15 RJ; these are the first simulations at Jupiter combining wave particle interactions and radial diffusion. The resulting electron flux at 100 keV and 1 MeV lies very close to the Galileo Interim Radiation Electron model spectrum after 1 and 10 days, respectively. The primary driver for the increase in the flux is cyclotron resonant acceleration by chorus waves. A peak in phase space density forms such that inside L≈9 radial diffusion transports electrons toward Jupiter, but outside L≈9 radial diffusion acts away from the planet. The results are insensitive to the softness of the initial energy spectrum but do depend on the value of the flux at the minimum energy boundary. We conclude by suggesting that the source population for the inner radiation belt at Jupiter could indeed be formed by wave-particle interactions
Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission
We show observations from the Magnetospheric Multiscale (MMS) mission of whistler mode waves in the Earth's low-latitude boundary layer (LLBL) during a magnetic reconnection event. The waves propagated obliquely to the magnetic field toward the X line and were confined to the edge of a southward jet in the LLBL. Bipolar parallel electric fields interpreted as electrostatic solitary waves (ESW) are observed intermittently and appear to be in phase with the parallel component of the whistler oscillations. The polarity of the ESWs suggests that if they propagate with the waves, they are electron enhancements as opposed to electron holes. The reduced electron distribution shows a shoulder in the distribution for parallel velocities between 17,000 and 22,000 km/s, which persisted during the interval when ESWs were observed, and is near the phase velocity of the whistlers. This shoulder can drive Langmuir waves, which were observed in the high-frequency parallel electric field data
Short term Variability of the Sun Earth System: An Overview of Progress Made during the CAWSES II Period
This paper presents an overview of results obtained during the CAWSES II
period on the short term variability of the Sun and how it affects the near
Earth space environment. CAWSES II was planned to examine the behavior of the
solar terrestrial system as the solar activity climbed to its maximum phase in
solar cycle 24. After a deep minimum following cycle 23, the Sun climbed to a
very weak maximum in terms of the sunspot number in cycle 24 (MiniMax24), so
many of the results presented here refer to this weak activity in comparison
with cycle 23. The short term variability that has immediate consequence to
Earth and geospace manifests as solar eruptions from closed field regions and
high speed streams from coronal holes. Both electromagnetic (flares) and mass
emissions (coronal mass ejections, CMEs) are involved in solar eruptions, while
coronal holes result in high speed streams that collide with slow wind forming
the so called corotating interaction regions (CIRs). Fast CMEs affect Earth via
leading shocks accelerating energetic particles and creating large geomagnetic
storms. CIRs and their trailing high speed streams (HSSs), on the other hand,
are responsible for recurrent small geomagnetic storms and extended (days) of
auroral zone activity, respectively. The latter lead to the acceleration of
relativistic magnetospheric killer electrons. One of the major consequences of
the weak solar activity is the altered physical state of the heliosphere that
has serious implications for the shock-driving and storm causing properties of
CMEs. Finally, a discussion is presented on extreme space weather events
prompted by the 2012 July 23 super storm event that occurred on the backside of
the Sun. Many of these studies were enabled by the simultaneous availability of
remote-sensing and in situ observations from multiple vantage points with
respect to the Sun Earth line.Comment: 85 pages, 30 figures, 2 tables, Accepted for publication in Progress
in Earth and Planetary Science on April 13, 201
- …
