4 research outputs found

    Discrete-time synchronization of chaotic systems for secure communication

    Get PDF
    This paper deals with the problem of designing an exact nonlinear reconstructor for discrete-time chaotic encrypted messages. More precisely, we investigate the problem of designing a discrete-time dead-beat observer for nonlinear systems with unknown inputs. The application of the proposed observer in the context of secure communication and data transmission is also investigated

    Nonlinear discrete-time synchronization via extended observers

    No full text
    A method is described for the synchronization of nonlinear discrete-time dynamics. The methodology consists of constructing observer–receiver dynamics that exploit at each time instant the drive signal and buffered past values of the drive signal. In this way, the method can be viewed as a dynamic reconstruction mechanism, in contrast to existing static inversion methods from the theory of dynamical systems. The method is illustrated on a few simulation examples consisting of coupled chaotic logistic equations. Also, a discrete-time message reconstruction scheme is simulated using the extended observer mechanism

    Nonlinear discrete-time synchronization via extended observers

    No full text
    A method is described for the synchronization of nonlinear discrete-time dynamics. The methodology consists of constructing observer–receiver dynamics that exploit at each time instant the drive signal and buffered past values of the drive signal. In this way, the method can be viewed as a dynamic reconstruction mechanism, in contrast to existing static inversion methods from the theory of dynamical systems. The method is illustrated on a few simulation examples consisting of coupled chaotic logistic equations. Also, a discrete-time message reconstruction scheme is simulated using the extended observer mechanism

    Nonlinear discrete-time synchronization via extended observers

    No full text
    A method is described for the synchronization of nonlinear discrete-time dynamics. The methodology consists of constructing observer–receiver dynamics that exploit at each time instant the drive signal and buffered past values of the drive signal. In this way, the method can be viewed as a dynamic reconstruction mechanism, in contrast to existing static inversion methods from the theory of dynamical systems. The method is illustrated on a few simulation examples consisting of coupled chaotic logistic equations. Also, a discrete-time message reconstruction scheme is simulated using the extended observer mechanism
    corecore