16,218 research outputs found

    Estimation of constant and time-varying dynamic parameters of HIV infection in a nonlinear differential equation model

    Full text link
    Modeling viral dynamics in HIV/AIDS studies has resulted in a deep understanding of pathogenesis of HIV infection from which novel antiviral treatment guidance and strategies have been derived. Viral dynamics models based on nonlinear differential equations have been proposed and well developed over the past few decades. However, it is quite challenging to use experimental or clinical data to estimate the unknown parameters (both constant and time-varying parameters) in complex nonlinear differential equation models. Therefore, investigators usually fix some parameter values, from the literature or by experience, to obtain only parameter estimates of interest from clinical or experimental data. However, when such prior information is not available, it is desirable to determine all the parameter estimates from data. In this paper we intend to combine the newly developed approaches, a multi-stage smoothing-based (MSSB) method and the spline-enhanced nonlinear least squares (SNLS) approach, to estimate all HIV viral dynamic parameters in a nonlinear differential equation model. In particular, to the best of our knowledge, this is the first attempt to propose a comparatively thorough procedure, accounting for both efficiency and accuracy, to rigorously estimate all key kinetic parameters in a nonlinear differential equation model of HIV dynamics from clinical data. These parameters include the proliferation rate and death rate of uninfected HIV-targeted cells, the average number of virions produced by an infected cell, and the infection rate which is related to the antiviral treatment effect and is time-varying. To validate the estimation methods, we verified the identifiability of the HIV viral dynamic model and performed simulation studies.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS290 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A dynamic Bayesian nonlinear mixed-effects model of HIV response incorporating medication adherence, drug resistance and covariates

    Full text link
    HIV dynamic studies have contributed significantly to the understanding of HIV pathogenesis and antiviral treatment strategies for AIDS patients. Establishing the relationship of virologic responses with clinical factors and covariates during long-term antiretroviral (ARV) therapy is important to the development of effective treatments. Medication adherence is an important predictor of the effectiveness of ARV treatment, but an appropriate determinant of adherence rate based on medication event monitoring system (MEMS) data is critical to predict virologic outcomes. The primary objective of this paper is to investigate the effects of a number of summary determinants of MEMS adherence rates on virologic response measured repeatedly over time in HIV-infected patients. We developed a mechanism-based differential equation model with consideration of drug adherence, interacted by virus susceptibility to drug and baseline characteristics, to characterize the long-term virologic responses after initiation of therapy. This model fully integrates viral load, MEMS adherence, drug resistance and baseline covariates into the data analysis. In this study we employed the proposed model and associated Bayesian nonlinear mixed-effects modeling approach to assess how to efficiently use the MEMS adherence data for prediction of virologic response, and to evaluate the predicting power of each summary metric of the MEMS adherence rates.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS376 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sieve estimation of constant and time-varying coefficients in nonlinear ordinary differential equation models by considering both numerical error and measurement error

    Full text link
    This article considers estimation of constant and time-varying coefficients in nonlinear ordinary differential equation (ODE) models where analytic closed-form solutions are not available. The numerical solution-based nonlinear least squares (NLS) estimator is investigated in this study. A numerical algorithm such as the Runge--Kutta method is used to approximate the ODE solution. The asymptotic properties are established for the proposed estimators considering both numerical error and measurement error. The B-spline is used to approximate the time-varying coefficients, and the corresponding asymptotic theories in this case are investigated under the framework of the sieve approach. Our results show that if the maximum step size of the pp-order numerical algorithm goes to zero at a rate faster than nβˆ’1/(p∧4)n^{-1/(p\wedge4)}, the numerical error is negligible compared to the measurement error. This result provides a theoretical guidance in selection of the step size for numerical evaluations of ODEs. Moreover, we have shown that the numerical solution-based NLS estimator and the sieve NLS estimator are strongly consistent. The sieve estimator of constant parameters is asymptotically normal with the same asymptotic co-variance as that of the case where the true ODE solution is exactly known, while the estimator of the time-varying parameter has the optimal convergence rate under some regularity conditions. The theoretical results are also developed for the case when the step size of the ODE numerical solver does not go to zero fast enough or the numerical error is comparable to the measurement error. We illustrate our approach with both simulation studies and clinical data on HIV viral dynamics.Comment: Published in at http://dx.doi.org/10.1214/09-AOS784 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Numerical optimal control for HIV prevention with dynamic budget allocation

    Full text link
    This paper is about numerical control of HIV propagation. The contribution of the paper is threefold: first, a novel model of HIV propagation is proposed; second, the methods from numerical optimal control are successfully applied to the developed model to compute optimal control profiles; finally, the computed results are applied to the real problem yielding important and practically relevant results.Comment: Submitted pape

    Modeling long-term longitudinal HIV dynamics with application to an AIDS clinical study

    Full text link
    A virologic marker, the number of HIV RNA copies or viral load, is currently used to evaluate antiretroviral (ARV) therapies in AIDS clinical trials. This marker can be used to assess the ARV potency of therapies, but is easily affected by drug exposures, drug resistance and other factors during the long-term treatment evaluation process. HIV dynamic studies have significantly contributed to the understanding of HIV pathogenesis and ARV treatment strategies. However, the models of these studies are used to quantify short-term HIV dynamics (<< 1 month), and are not applicable to describe long-term virological response to ARV treatment due to the difficulty of establishing a relationship of antiviral response with multiple treatment factors such as drug exposure and drug susceptibility during long-term treatment. Long-term therapy with ARV agents in HIV-infected patients often results in failure to suppress the viral load. Pharmacokinetics (PK), drug resistance and imperfect adherence to prescribed antiviral drugs are important factors explaining the resurgence of virus. To better understand the factors responsible for the virological failure, this paper develops the mechanism-based nonlinear differential equation models for characterizing long-term viral dynamics with ARV therapy. The models directly incorporate drug concentration, adherence and drug susceptibility into a function of treatment efficacy and, hence, fully integrate virologic, PK, drug adherence and resistance from an AIDS clinical trial into the analysis. A Bayesian nonlinear mixed-effects modeling approach in conjunction with the rescaled version of dynamic differential equations is investigated to estimate dynamic parameters and make inference. In addition, the correlations of baseline factors with estimated dynamic parameters are explored and some biologically meaningful correlation results are presented. Further, the estimated dynamic parameters in patients with virologic success were compared to those in patients with virologic failure and significantly important findings were summarized. These results suggest that viral dynamic parameters may play an important role in understanding HIV pathogenesis, designing new treatment strategies for long-term care of AIDS patients.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS192 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore