1,008,662 research outputs found
Controller performance design and assessment using nonlinear generalized minimum variance benchmark : scalar case
A nonlinear version of the Generalized Minimum Variance (GMV) multivariable control law has been recently derived for the control of nonlinear, possibly time-varying systems. This paper presents the results of the controller performance assessment against this Nonlinear GMV controller in the scalar case. The minimum variance of the generalized output is estimated from routine operating data given only the plant time delay and the technique is applied to a nonlinear reactor control example
H∞ Control of Nonlinear Systems: A Class of Controllers
The standard state space solutions to the H∞ control problem for linear time invariant systems are generalized to nonlinear time-invariant systems. A class of nonlinear H∞-controllers are parameterized as nonlinear fractional transformations on contractive, stable free nonlinear parameters. As in the linear case, the H∞ control problem is solved by its reduction to four simpler special state space problems, together with a separation argument. Another byproduct of this approach is that the sufficient conditions for H∞ control problem to be solved are also derived with this machinery. The solvability for nonlinear H∞-control problem requires positive definite solutions to two parallel decoupled Hamilton-Jacobi inequalities and these two solutions satisfy an additional coupling condition. An illustrative example, which deals with a passive plant, is given at the end
Constrained nonlinear optimal control: a converse HJB approach
Extending the concept of solving the Hamilton-Jacobi-Bellman (HJB) optimization equation backwards [2], the so called converse constrained optimal control problem is introduced, and used to create various classes of nonlinear systems for which the optimal controller subject to constraints is known. In this way a systematic method for the testing, validation and comparison of different control techniques
with the optimal is established. Because it naturally and explicitly handles constraints, particularly control input saturation, model predictive control (MPC) is a potentially powerful approach for nonlinear control design. However, nonconvexity of the nonlinear programs (NLP) involved in the MPC optimization makes the solution problematic. In order to explore properties of MPC-based constrained control schemes, and to point out the potential issues in implementing MPC, challenging benchmark examples are generated and analyzed. Properties of MPC-based constrained techniques are then evaluated and implementation issues are explored by applying both nonlinear MPC and MPC with feedback linearization
Nonlinear Receding-Horizon Control of Rigid Link Robot Manipulators
The approximate nonlinear receding-horizon control law is used to treat the
trajectory tracking control problem of rigid link robot manipulators. The
derived nonlinear predictive law uses a quadratic performance index of the
predicted tracking error and the predicted control effort. A key feature of
this control law is that, for their implementation, there is no need to perform
an online optimization, and asymptotic tracking of smooth reference
trajectories is guaranteed. It is shown that this controller achieves the
positions tracking objectives via link position measurements. The stability
convergence of the output tracking error to the origin is proved. To enhance
the robustness of the closed loop system with respect to payload uncertainties
and viscous friction, an integral action is introduced in the loop. A nonlinear
observer is used to estimate velocity. Simulation results for a two-link rigid
robot are performed to validate the performance of the proposed controller.
Keywords: receding-horizon control, nonlinear observer, robot manipulators,
integral action, robustness
- …
