27,942 research outputs found
Stacking-symmetry governed second harmonic generation in graphene trilayers
Crystal symmetry plays a central role in governing a wide range of
fundamental physical phenomena. One example is the nonlinear optical second
harmonic generation (SHG), which requires inversion symmetry breaking. Here we
report a unique stacking-induced SHG in trilayer graphene, whose individual
monolayer sheet is centrosymmetric. Depending on layer stacking sequence, we
observe a strong optical SHG in Bernal (ABA) stacked non-centrosymmetric
trilayer, while it vanishes in rhombohedral (ABC) stacked one which preserves
inversion symmetry. This highly contrasting SHG due to the distinct stacking
symmetry enables us to map out the ABA and ABC crystal domains in otherwise
homogeneous graphene trilayer. The extracted second order nonlinear
susceptibility of the ABA trilayer is surprisingly large, comparable to the
best known 2D semiconductors enhanced by excitonic resonance. Our results
reveal a novel stacking order induced nonlinear optical effect, as well as
unleash the opportunity for studying intriguing physical phenomena predicted
for stacking-dependent ABA and ABC graphene trilayers.Comment: To appear in Science Advance
Coherent Raman spectro-imaging with laser frequency combs
Optical spectroscopy and imaging of microscopic samples have opened up a wide
range of applications throughout the physical, chemical, and biological
sciences. High chemical specificity may be achieved by directly interrogating
the fundamental or low-lying vibrational energy levels of the compound
molecules. Amongst the available prevailing label-free techniques, coherent
Raman scattering has the distinguishing features of high spatial resolution
down to 200 nm and three-dimensional sectioning. However, combining fast
imaging speed and identification of multiple - and possibly unexpected-
compounds remains challenging: existing high spectral resolution schemes
require long measurement times to achieve broad spectral spans. Here we
overcome this difficulty and introduce a novel concept of coherent anti-Stokes
Raman scattering (CARS) spectro-imaging with two laser frequency combs. We
illustrate the power of our technique with high resolution (4 cm-1) Raman
spectra spanning more than 1200 cm-1 recorded within less than 15 microseconds.
Furthermore, hyperspectral images combining high spectral (10 cm-1) and spatial
(2 micrometers) resolutions are acquired at a rate of 50 pixels per second.
Real-time multiplex accessing of hyperspectral images may dramatically expand
the range of applications of nonlinear microscopy.Comment: 8 pages, 3 figure
Effect of Scatterering on Coherent Anti-Stokes Raman Scattering (CARS) signals
We develop a computational framework to examine the factors responsible for
scattering-induced distortions of coherent anti-Stokes Raman scattering (CARS)
signals in turbid samples. We apply the Huygens-Fresnel Wave-based Electric
Field Superposition (HF-WEFS) method combined with the radiating dipole
approximation to compute the effects of scattering-induced distortions of focal
excitation fields on the far-field CARS signal. We analyze the effect of
spherical scatterers, placed in the vicinity of the focal volume, on the CARS
signal emitted by different objects (2{\mu}m diameter solid sphere, 2{\mu}m
diameter myelin cylinder and 2{\mu}m diameter myelin tube). We find that
distortions in the CARS signals arise not only from attenuation of the focal
field but also from scattering-induced changes in the spatial phase that
modifies the angular distribution of the CARS emission. Our simulations further
show that CARS signal attenuation can be minimized by using a high numerical
aperture condenser. Moreover, unlike the CARS intensity image, CARS images
formed by taking the ratio of CARS signals obtained using x- and y-polarized
input fields is relatively insensitive to the effects of spherical scatterers.
Our computational framework provide a mechanistic approach to characterizing
scattering-induced distortions in coherent imaging of turbid media and may
inspire bottom-up approaches for adaptive optical methods for image correction.Comment: 15 pages, 7 figure
Second-harmonic generation of ZnO nanoparticles synthesized by laser ablation of solids in liquids
We report the synthesis of small zinc oxide nanoparticles (ZnO NPs) based colloidal suspensions and the study of second-harmonic generation from aggregated ZnO NPs deposited on glass substrates. The colloidal suspensions were obtained using the laser ablation of solids in liquids technique, ablating a Zn solid target immersed in acetone as the liquid medium, with ns-laser pulses (1064 nm) of a Nd-YAG laser. The per pulse laser fluence, the laser repetition rate frequency and the ablation time were kept constant. The absorption evolution of the obtained suspensions was optically characterized through absorption spectroscopy until stabilization. Raman spectroscopy, SEM and HRTEM were used to provide evidence of the ZnO NPs structure. HRTEM results showed that 5–8 nm spheroids ZnO NPs were obtained. Strong second-harmonic signal is obtained from random ZnO monocrystalline NPs and from aggregated ZnO NPs, suggesting that the high efficiency of the nonlinear process may not depend on the NPs size or aggregation state
3D Imaging of Gems and Minerals by Multiphoton Microscopy
Many optical approaches have been used to examine the composition and
structure of gemstones, both recently and throughout history. The nonlinear
optical behavior of different gemstones has not been investigated, and the
higher order terms to the refractive index represent an unused tool for
qualifying and examining a stone. We have used a multiphoton microscope to
examine the nonlinear optical properties of 36 different gemstones and
demonstrate that it is a useful tool for imaging them three-dimensionally up to
the millimeter scale below the sample surface. The polarization dependence of
second harmonic generation signals was used to examine the crystal orientations
inside the minerals.Comment: 9 pages, five figure
A route to sub-diffraction-limited CARS Microscopy
We theoretically investigate a scheme to obtain sub-diffraction-limited resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. We find using density matrix calculations that the rise of vibrational (Raman) coherence can be strongly suppressed, and thereby the emission of CARS signals can be significantly reduced, when pre-populating the corresponding vibrational state through an incoherent process. The effectiveness of pre-populating the vibrational state of interest is investigated by considering the excitation of a neighbouring vibrational (control) state through an intense, mid-infrared control laser. We observe that, similar to the processes employed in stimulated emission depletion microscopy, the CARS signal exhibits saturation behaviour if the transition rate between the vibrational and the control state is large. Our approach opens up the possibility of achieving chemically selectivity sub-diffraction-limited spatially resolved imaging
Optical imaging of strain in two-dimensional crystals
Strain engineering is widely used in material science to tune the
(opto-)electronic properties of materials and enhance the performance of
devices. Two-dimensional atomic crystals are a versatile playground to study
the influence of strain, as they can sustain very large deformations without
breaking. Various optical techniques have been employed to probe strain in
two-dimensional materials, including micro-Raman and photoluminescence
spectroscopy. Here we demonstrate that optical second harmonic generation
constitutes an even more powerful technique, as it allows to extract the full
strain tensor with a spatial resolution below the optical diffraction limit.
Our method is based on the strain-induced modification of the nonlinear
susceptibility tensor due to a photoelastic effect. Using a two-point bending
technique, we determine the photoelastic tensor elements of molybdenum
disulfide. Once identified, these parameters allow us to spatially image the
two-dimensional strain field in an inhomogeneously strained sample.Comment: 13 pages, 4 figure
Realignment-enhanced coherent anti-Stokes Raman scattering (CARS) and three-dimensional imaging in anisotropic fluids
We apply coherent anti-Stokes Raman Scattering (CARS) microscopy to
characterize director structures in liquid crystals.Comment: 14 pages, 11 figure
- …
