3 research outputs found

    Efficient cardiovascular parameters estimation for fluid-structure simulations using gappy proper orthogonal decomposition

    Get PDF
    As full-scale detailed hemodynamic simulations of the entire vasculature are not feasible, numerical analysis should be focused on specific regions of the cardiovascular system, which requires the identification of lumped parameters to represent the patient behavior outside the simulated computational domain. We present a novel technique for estimating cardiovascular model parameters using gappy Proper Orthogonal Decomposition (g-POD). A POD basis is constructed with FSI simulations for different values of the lumped model parameters, and a linear operator is applied to retain information that can be compared to the available patient measurements. Then, the POD coefficients of the reconstructed solution are computed either by projecting patient measurements or by solving a minimization problem with constraints. The POD reconstruction is then used to estimate the model parameters. In the first test case, the parameter values of a 3-element Windkessel model are approximated using artificial patient measurements, obtaining a relative error of less than 4.2%. In the second case, 4 sets of 3-element Windkessel are approximated in a patient’s aorta geometry, resulting in an error of less than 8% for the flow and less than 5% for the pressure. The method shows accurate results even with noisy patient data. It automatically calculates the delay between measurements and simulations and has flexibility in the types of patient measurements that can handle (at specific points, spatial or time averaged). The method is easy to implement and can be used in simulations performed in general-purpose FSI software.Universidade de Vigo/CISU

    Multiscale Fluid-Structure Interaction Models Development and Applications to the 3D Elements of a Human Cardiovascular System

    Get PDF
    Cardiovascular diseases (CVD) are the number one cause of death of humans in the United States and worldwide. Accurate, non-invasive, and cheaper diagnosis methods have always been on demand as cardiovascular monitoring increase in prevalence. The primary causes of the various forms of these CVDs are atherosclerosis and aneurysms in the blood vessels. Current noninvasive methods (i.e., statistical/medical) permit fairly accurate detection of the disease once clinical symptoms are suggestive of the existence of hemodynamic disorders. Therefore, the recent surge of hemodynamics models facilitated the prediction of cardiovascular conditions. The hemodynamic modeling of a human circulatory system involves varying levels of complexity which must be accounted for and resolved. Pulse-wave propagation effects and high aspect-ratio segments of the vasculature are represented using a quasi-one-dimensional (1D), non-steady, averaged over the cross-section models. However, these reduced 1D models do not account for the blood flow patterns (recirculation zones), vessel wall shear stresses and quantification of repetitive mechanical stresses which helps to predict a vessel life. Even a whole three-dimensional (3D) modeling of the vasculature is computationally intensive and do not fit the timeline of practical use. Thus the intertwining of a quasi 1D global vasculature model with a specific/risk-prone 3D local vessel ones is imperative. This research forms part of a multiphysics project that aims to improve the detailed understanding of the hemodynamics by investigating a computational model of fluid-structure interaction (FSI) of in vivo blood flow. First idealized computational a 3D FSI artery model is configured and executed in ANSYS Workbench, forming an implicit coupling of the blood flow and vessel walls. Then the thesis focuses on an approach developed to employ commercial tools rather than in-house mathematical models in achieving multiscale simulations. A robust algorithm is constructed to combine stabilization techniques to simultaneously overcome the added-mass effect in 3D FSI simulation and mathematical difficulties such as the assignment of boundary conditions at the interface between the 3D-1D coupling. Applications can be of numerical examples evaluating the change of hemodynamic parameters and diagnosis of an abdominal aneurysm, deep vein thrombosis, and bifurcation areas
    corecore