2 research outputs found

    SELFISHMIGRATE: A Scalable Algorithm for Non-clairvoyantly Scheduling Heterogeneous Processors

    Full text link
    We consider the classical problem of minimizing the total weighted flow-time for unrelated machines in the online \emph{non-clairvoyant} setting. In this problem, a set of jobs JJ arrive over time to be scheduled on a set of MM machines. Each job jj has processing length pjp_j, weight wjw_j, and is processed at a rate of ij\ell_{ij} when scheduled on machine ii. The online scheduler knows the values of wjw_j and ij\ell_{ij} upon arrival of the job, but is not aware of the quantity pjp_j. We present the {\em first} online algorithm that is {\em scalable} ((1+\eps)-speed O(1ϵ2)O(\frac{1}{\epsilon^2})-competitive for any constant \eps > 0) for the total weighted flow-time objective. No non-trivial results were known for this setting, except for the most basic case of identical machines. Our result resolves a major open problem in online scheduling theory. Moreover, we also show that no job needs more than a logarithmic number of migrations. We further extend our result and give a scalable algorithm for the objective of minimizing total weighted flow-time plus energy cost for the case of unrelated machines and obtain a scalable algorithm. The key algorithmic idea is to let jobs migrate selfishly until they converge to an equilibrium. Towards this end, we define a game where each job's utility which is closely tied to the instantaneous increase in the objective the job is responsible for, and each machine declares a policy that assigns priorities to jobs based on when they migrate to it, and the execution speeds. This has a spirit similar to coordination mechanisms that attempt to achieve near optimum welfare in the presence of selfish agents (jobs). To the best our knowledge, this is the first work that demonstrates the usefulness of ideas from coordination mechanisms and Nash equilibria for designing and analyzing online algorithms

    Nonclairvoyant sleep management and flow-time scheduling on multiple processors

    No full text
    In large data centers, managing the availability of servers is often non-trivial, especially when the workload is unpredictable. Using too many servers would waste energy, while using too few would affect the performance. A recent theoretical study, which assumes the clairvoyant model where job size is known at arrival time, has successfully integrated sleep-and-wakeup management into multi-processor job scheduling and obtained a competitive tradeoff between flow time and energy [6]. This paper extends the study to the nonclairvoyant model where the size of a job is not known until the job is finished. We give a new online algorithm SATA which is, for any ε > 0, (1 + ε)-speed O( 1⁄ε2 )-competitive for the objective of minimizing the sum of flow time and energy. SATA also gives a new nonclairvoyant result for the classic setting where all processors are always on and the concern is flow time only. In this case, the previous work of Chekuri et al. [7] and Chadha et al. [8] has revealed that random dispatching can give a non-migratory algorithm that is (1 + ε)-speed O( 1⁄ε3 )-competitive, and any deterministic non-migratory algorithm is Ω(m⁄s)-competitive using s-speed processors [7], where m is the number of processors. SATA, which is a deterministic algorithm migrating each job at most four times on average, has a competitive ratio of O(1⁄ε2). The number of migrations used by SATA is optimal up to a constant factor as we can extend the above lower bound result.link_to_OA_fulltex
    corecore