5 research outputs found

    Design and Development of Cellular Structure for Additive Manufacturing

    Get PDF
    The demand for shorter product development time has resulted in the introduction of a new paradigm called Additive Manufacturing (AM). Due to its significant advantages in terms of cost effective, lesser build time, elimination of expensive tooling, design flexibility AM is finding applications in many diverse fields of the industry today. One of the recent applications of this technology is for fabrication of cellular structures. Cellular structures are designed to have material where it is needed for specific applications. Compared to solid materials, these structures can provide high strength-to-weight ratio, good energy absorption characteristics and good thermal and acoustic insulation properties to aerospace, medical and engineering products. However, due to inclusion of too many design variables, the design process of these structures is a challenge task. Furthermore, polymer additive manufacturing techniques, such as fused deposition modeling (FDM) process which shows the great capability to fabricate these structures, are still facing certain process limitations in terms of support structure requirement for certain category of cellular structures. Therefore, in this research, a computer-aided design (CAD) based method is proposed to design and develop hexagonal honeycomb structure (self-supporting periodic cellular structure) for FDM process. This novel methodology is found to have potential to create honeycomb cellular structures with different volume fractions successfully without any part distortion. Once designing process is complete, mechanical and microstructure properties of these structures are characterized to investigate effect of volume fraction on compressive strength of the part. Volume fraction can be defined as the volume percentage of the solid material inside the cellular structure and it is varied in this thesis by changing the cell size and wall thickness of honeycombs. Compression strength of the honeycomb structure is observed to increase with the increase in the volume fraction and this behavior is compared with an existing Wierzbicki expression, developed for predicting compression properties. Some differences are noticed in between experimentally tested and Wierzbicki model estimated compressive strength. These differences may be attributed to layer by layer deposition strategy and the residual stress inherent to the FDM-manufacturing process. Finally, as a design case study, resin transfer molding (RTM) mold internally filled with honeycomb is designed and tested instead of the regular FDM mold. Results show that our proposed methodology has the ability to generate honeycomb structures efficiently while reducing the expensive build material (Mold) consumption to near about 50%. However, due to complex geometry of the honeycomb pattern the build time increased about 65% compare to solid FDM mould. In this regard, FDM tool-path can be optimized in future, so that overall product cost will be minimized. As per the author’s knowledge, this design methodology will have a greatest contribution towards creating sustainable and green product development. Using this, in future, expensive build material and production time can also be minimized for some hydroforming and injection molding applications

    Bioadditive manufacturing of hybrid tissue scaffolds for controlled release kinetics

    Get PDF
    Development of engineered tissue scaffolds with superior control over cell-protein interactions is still very much infancy. Advancing through heterogeneous multifold scaffolds with controlled release fashion enables synchronization of regenerating tissue with the release kinetics of loaded biomolecules. This might be an engineering challenge and promising approach for improved and efficient tissue regeneration. The most critical limitations: the selection of proper protein(s) incorporation, and precise control over concentration gradient and timing should be overcome. Hence, tissue scaffolds need to be fabricated in a way that proteins or growth factors should be incorporated and released in a specific spatial and temporal orientation to mimic the natural tissue regeneration process. Spatial and temporal control over heterogeneous porous tissue scaffolds can be achieved by controlling two important parameters: (i) internal architecture with enhanced fluid transport, and (ii) distribution of scaffold base material and loaded modifiers. In this research, heterogeneous tissue scaffolds are designed considering both the parameters. Firstly, the three-dimensional porous structures of the scaffold are geometrically partition into functionally uniform porosity regions and controlled spatial micro-architecture has been achieved using a functionally gradient porosity function. The bio-fabrication of the designed internal porous architecture has been performed using a single nozzle bioadditive manufacturing system. The internal architecture scheme is developed to enhance fluid transport with continuous base material deposition Next, the hybrid tissue scaffolds are modeled with varying material characteristics to mediate the release of base material and enclosed biological modifiers are proposed based on tissue engineering requirements. The hybrid scaffolds are fabricated for spatial control of biomolecules and base material to synchronize the release kinetics with tissue regeneration. A pressure-assisted multi-chamber single nozzle bioadditive manufacturing system is used to fabricate hybrid scaffolds

    A semi-automatic computer-aided method for surgical template design

    Get PDF
    This paper presents a generalized integrated framework of semi-automatic surgical template design. Several algorithms were implemented including the mesh segmentation, offset surface generation, collision detection, ruled surface generation, etc., and a special software named TemDesigner was developed. With a simple user interface, a customized template can be semi- automatically designed according to the preoperative plan. Firstly, mesh segmentation with signed scalar of vertex is utilized to partition the inner surface from the input surface mesh based on the indicated point loop. Then, the offset surface of the inner surface is obtained through contouring the distance field of the inner surface, and segmented to generate the outer surface. Ruled surface is employed to connect inner and outer surfaces. Finally, drilling tubes are generated according to the preoperative plan through collision detection and merging. It has been applied to the template design for various kinds of surgeries, including oral implantology, cervical pedicle screw insertion, iliosacral screw insertion and osteotomy, demonstrating the efficiency, functionality and generality of our method.Comment: 18 pages, 16 figures, 2 tables, 36 reference

    Optimization of Three-Axis Vertical Milling of Sculptured Surfaces

    Get PDF
    A tool path generation method for sculptured surfaces defined by triangular meshes is presented in this thesis along with an algorithm that helps determine the best type of cutter geometry to machine a specific surface. Existing tool path planning methods for sculptured surfaces defined by triangular meshes require extensive computer processing power and result in long processing times mainly since surface topology for triangular meshes is not provided. The method presented in this thesis avoids this problem by offsetting each triangular facet individually. The combination of all the individual offsets make up a cutter location surface. A single triangle offsetting results in many more triangles; many of these are redundant, increasing the time required for data handling in subsequent steps. To avoid the large number of triangles, the proposed method creates a bounding space to which the offset surface is limited. The original surface mesh describes the bounding surface of a solid, thus it is continuous with no gaps. Therefore, the resulting bounding spaces are also continuous and without gaps. Applying the boundary space limits the size of the offset surface resulting in a reduction in the number of triangular surfaces generated. The offset surface generation may result in unwanted intersecting triangles. The tool path planning strategy addresses this issue by applying hidden-surface removal algorithms. The cutter locations from the offset surface are obtained using the depth buffer. The simulation and machining results show that the tool paths generated by this process are correct. Furthermore, the time required to generate tool paths is less than the time required by other methods. The second part of this thesis presents a method for selecting an optimal cutter type. Extensive research has been carried out to determine the best cutter size for a given machining operation. However, cutter type selection has not been studied in-depth. This work presents a method for selecting the best cutter type based on the amount of material removed. By comparing the amount of material removed by two cutters at a given cutter location the best cutter can be selected. The results show that the optimal cutter is highly dependent on the surface geometry. For most complex surfaces it was found that a combination of cutters provides the best results

    Smooth Subdivision Surfaces: Mesh Blending and Local Interpolation

    Get PDF
    Subdivision surfaces are widely used in computer graphics and animation. Catmull-Clark subdivision (CCS) is one of the most popular subdivision schemes. It is capable of modeling and representing complex shape of arbitrary topology. Polar surface, working on a triangle-quad mixed mesh structure, is proposed to solve the inherent ripple problem of Catmull-Clark subdivision surface (CCSS). CCSS is known to be C1 continuous at extraordinary points. In this work, we present a G2 scheme at CCS extraordinary points. The work is done by revising CCS subdivision step with Extraordinary-Points-Avoidance model together with mesh blending technique which selects guiding control points from a set of regular sub-meshes (named dominative control meshes) iteratively at each subdivision level. A similar mesh blending technique is applied to Polar extraordinary faces of Polar surface as well. Both CCS and Polar subdivision schemes are approximating. Traditionally, one can obtain a CCS limit surface to interpolate given data mesh by iteratively solving a global linear system. In this work, we present a universal interpolating scheme for all quad subdivision surfaces, called Bezier Crust. Bezier Crust is a specially selected bi-quintic Bezier surface patch. With Bezier Crust, one can obtain a high quality interpolating surface on CCSS by parametrically adding CCSS and Bezier Crust. We also show that with a triangle/quad conversion process one can apply Bezier Crust on Polar surfaces as well. We further show that Bezier Crust can be used to generate hollowed 3D objects for applications in rapid prototyping. An alternative interpolating approach specifically designed for CCSS is developed. This new scheme, called One-Step Bi-cubic Interpolation, uses bicubic patches only. With lower degree polynomial, this scheme is appropriate for interpolating large-scale data sets. In sum, this work presents our research on improving surface smoothness at extraordinary points of both CCS and Polar surfaces and present two local interpolating approaches on approximating subdivision schemes. All examples included in this work show that the results of our research works on subdivision surfaces are of high quality and appropriate for high precision engineering and graphics usage
    corecore