4,926 research outputs found

    Efficient rare-event simulation for the maximum of heavy-tailed random walks

    Full text link
    Let (Xn:nā‰„0)(X_n:n\geq 0) be a sequence of i.i.d. r.v.'s with negative mean. Set S0=0S_0=0 and define Sn=X1+...+XnS_n=X_1+... +X_n. We propose an importance sampling algorithm to estimate the tail of M=maxā”{Sn:nā‰„0}M=\max \{S_n:n\geq 0\} that is strongly efficient for both light and heavy-tailed increment distributions. Moreover, in the case of heavy-tailed increments and under additional technical assumptions, our estimator can be shown to have asymptotically vanishing relative variance in the sense that its coefficient of variation vanishes as the tail parameter increases. A key feature of our algorithm is that it is state-dependent. In the presence of light tails, our procedure leads to Siegmund's (1979) algorithm. The rigorous analysis of efficiency requires new Lyapunov-type inequalities that can be useful in the study of more general importance sampling algorithms.Comment: Published in at http://dx.doi.org/10.1214/07-AAP485 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Generation and Evaluation of Space-Time Trajectories of Photovoltaic Power

    Get PDF
    In the probabilistic energy forecasting literature, emphasis is mainly placed on deriving marginal predictive densities for which each random variable is dealt with individually. Such marginals description is sufficient for power systems related operational problems if and only if optimal decisions are to be made for each lead-time and each location independently of each other. However, many of these operational processes are temporally and spatially coupled, while uncertainty in photovoltaic (PV) generation is strongly dependent in time and in space. This issue is addressed here by analysing and capturing spatio-temporal dependencies in PV generation. Multivariate predictive distributions are modelled and space-time trajectories describing the potential evolution of forecast errors through successive lead-times and locations are generated. Discrimination ability of the relevant scoring rules on performance assessment of space-time trajectories of PV generation is also studied. Finally, the advantage of taking into account space-time correlations over probabilistic and point forecasts is investigated. The empirical investigation is based on the solar PV dataset of the Global Energy Forecasting Competition (GEFCom) 2014.Comment: 33 pages, 11 Figure

    copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas

    Get PDF
    The use of copula-based models in EDAs (estimation of distribution algorithms) is currently an active area of research. In this context, the copulaedas package for R provides a platform where EDAs based on copulas can be implemented and studied. The package offers complete implementations of various EDAs based on copulas and vines, a group of well-known optimization problems, and utility functions to study the performance of the algorithms. Newly developed EDAs can be easily integrated into the package by extending an S4 class with generic functions for their main components. This paper presents copulaedas by providing an overview of EDAs based on copulas, a description of the implementation of the package, and an illustration of its use through examples. The examples include running the EDAs defined in the package, implementing new algorithms, and performing an empirical study to compare the behavior of different algorithms on benchmark functions and a real-world problem
    • ā€¦
    corecore