424 research outputs found

    Exponential multistability of memristive Cohen-Grossberg neural networks with stochastic parameter perturbations

    Get PDF
    © 2020 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/.Due to instability being induced easily by parameter disturbances of network systems, this paper investigates the multistability of memristive Cohen-Grossberg neural networks (MCGNNs) under stochastic parameter perturbations. It is demonstrated that stable equilibrium points of MCGNNs can be flexibly located in the odd-sequence or even-sequence regions. Some sufficient conditions are derived to ensure the exponential multistability of MCGNNs under parameter perturbations. It is found that there exist at least (w+2) l (or (w+1) l) exponentially stable equilibrium points in the odd-sequence (or the even-sequence) regions. In the paper, two numerical examples are given to verify the correctness and effectiveness of the obtained results.Peer reviewe

    Amplitude Death: The emergence of stationarity in coupled nonlinear systems

    Full text link
    When nonlinear dynamical systems are coupled, depending on the intrinsic dynamics and the manner in which the coupling is organized, a host of novel phenomena can arise. In this context, an important emergent phenomenon is the complete suppression of oscillations, formally termed amplitude death (AD). Oscillations of the entire system cease as a consequence of the interaction, leading to stationary behavior. The fixed points that the coupling stabilizes can be the otherwise unstable fixed points of the uncoupled system or can correspond to novel stationary points. Such behaviour is of relevance in areas ranging from laser physics to the dynamics of biological systems. In this review we discuss the characteristics of the different coupling strategies and scenarios that lead to AD in a variety of different situations, and draw attention to several open issues and challenging problems for further study.Comment: Physics Reports (2012

    Nonlinearity of local dynamics promotes multi-chimeras

    Get PDF
    Chimera states are complex spatio-temporal patterns in which domains of synchronous and asynchronous dynamics coexist in coupled systems of oscillators. We examine how the character of the individual elements influences chimera states by studying networks of nonlocally coupled Van der Pol oscillators. Varying the bifurcation parameter of the Van der Pol system, we can interpolate between regular sinusoidal and strongly nonlinear relaxation oscillations, and demonstrate that more pronounced nonlinearity induces multi-chimera states with multiple incoherent domains. We show that the stability regimes for multi-chimera states and the mean phase velocity profiles of the oscillators change significantly as the nonlinearity becomes stronger. Furthermore, we reveal the influence of time delay on chimera patterns

    Convergence of Neural Networks with a Class of Real Memristors with Rectifying Characteristics

    Get PDF
    The paper considers a neural network with a class of real extended memristors obtained via the parallel connection of an ideal memristor and a nonlinear resistor. The resistor has the same rectifying characteristic for the current as that used in relevant models in the literature to account for diode-like effects at the interface between the memristor metal and insulating material. The paper proves some fundamental results on the trajectory convergence of this class of real memristor neural networks under the assumption that the interconnection matrix satisfies some symmetry conditions. First of all, the paper shows that, while in the case of neural networks with ideal memristors, it is possible to explicitly find functions of the state variables that are invariants of motions, the same functions can be used as Lyapunov functions that decrease along the trajectories in the case of real memristors with rectifying characteristics. This fundamental property is then used to study convergence by means of a reduction-of-order technique in combination with a Lyapunov approach. The theoretical predictions are verified via numerical simulations, and the convergence results are illustrated via the applications of real memristor neural networks to the solution of some image processing tasks in real time

    Persistent Entrainment in Non-linear Neural Networks With Memory

    Get PDF
    We investigate the dynamics of a non-linear network with noise, periodic forcing and delayed feedback. Our model reveals that there exist forcing regimes—called persistent entrainment regimes—in which the system displays oscillatory responses that outlast the termination of the forcing. Our analysis shows that in presence of delays, periodic forcing can selectively excite components of an infinite reservoir of intrinsic modes and hence display a wide range of damped frequencies. Mean-field and linear stability analysis allows a characterization of the magnitude and duration of these persistent oscillations, as well as their dependence on noise intensity and time delay. These results provide new perspectives on the control of non-linear delayed system using periodic forcing

    Complex partial synchronization patterns in networks of delay-coupled neurons

    Get PDF
    We study the spatio-temporal dynamics of a multiplex network of delay-coupled FitzHugh–Nagumo oscillators with non-local and fractal connectivities. Apart from chimera states, a new regime of coexistence of slow and fast oscillations is found. An analytical explanation for the emergence of such coexisting partial synchronization patterns is given. Furthermore, we propose a control scheme for the number of fast and slow neurons in each layer.DFG, 163436311, SFB 910: Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzept

    Synchronous solutions and their stability in nonlocally coupled phase oscillators with propagation delays

    Full text link
    We study the existence and stability of synchronous solutions in a continuum field of non-locally coupled identical phase oscillators with distance-dependent propagation delays. We present a comprehensive stability diagram in the parameter space of the system. From the numerical results a heuristic synchronization condition is suggested, and an analytic relation for the marginal stability curve is obtained. We also provide an expression in the form of a scaling relation that closely follows the marginal stability curve over the complete range of the non-locality parameter.Comment: accepted in Phys. Rev. E (2010
    • …
    corecore