1,154 research outputs found

    A Game-theoretic Machine Learning Approach for Revenue Maximization in Sponsored Search

    Full text link
    Sponsored search is an important monetization channel for search engines, in which an auction mechanism is used to select the ads shown to users and determine the prices charged from advertisers. There have been several pieces of work in the literature that investigate how to design an auction mechanism in order to optimize the revenue of the search engine. However, due to some unrealistic assumptions used, the practical values of these studies are not very clear. In this paper, we propose a novel \emph{game-theoretic machine learning} approach, which naturally combines machine learning and game theory, and learns the auction mechanism using a bilevel optimization framework. In particular, we first learn a Markov model from historical data to describe how advertisers change their bids in response to an auction mechanism, and then for any given auction mechanism, we use the learnt model to predict its corresponding future bid sequences. Next we learn the auction mechanism through empirical revenue maximization on the predicted bid sequences. We show that the empirical revenue will converge when the prediction period approaches infinity, and a Genetic Programming algorithm can effectively optimize this empirical revenue. Our experiments indicate that the proposed approach is able to produce a much more effective auction mechanism than several baselines.Comment: Twenty-third International Conference on Artificial Intelligence (IJCAI 2013

    Characterizing Optimal Adword Auctions

    Full text link
    We present a number of models for the adword auctions used for pricing advertising slots on search engines such as Google, Yahoo! etc. We begin with a general problem formulation which allows the privately known valuation per click to be a function of both the identity of the advertiser and the slot. We present a compact characterization of the set of all deterministic incentive compatible direct mechanisms for this model. This new characterization allows us to conclude that there are incentive compatible mechanisms for this auction with a multi-dimensional type-space that are {\em not} affine maximizers. Next, we discuss two interesting special cases: slot independent valuation and slot independent valuation up to a privately known slot and zero thereafter. For both of these special cases, we characterize revenue maximizing and efficiency maximizing mechanisms and show that these mechanisms can be computed with a worst case computational complexity O(n2m2)O(n^2m^2) and O(n2m3)O(n^2m^3) respectively, where nn is number of bidders and mm is number of slots. Next, we characterize optimal rank based allocation rules and propose a new mechanism that we call the customized rank based allocation. We report the results of a numerical study that compare the revenue and efficiency of the proposed mechanisms. The numerical results suggest that customized rank-based allocation rule is significantly superior to the rank-based allocation rules.Comment: 29 pages, work was presented at a) Second Workshop on Sponsored Search Auctions, Ann Arbor, MI b) INFORMS Annual Meeting, Pittsburgh c) Decision Sciences Seminar, Fuqua School of Business, Duke Universit
    • …
    corecore