2,760 research outputs found

    Deep Learning How to Fit an Intravoxel Incoherent Motion Model to Diffusion-Weighted MRI

    Full text link
    Purpose: This prospective clinical study assesses the feasibility of training a deep neural network (DNN) for intravoxel incoherent motion (IVIM) model fitting to diffusion-weighted magnetic resonance imaging (DW-MRI) data and evaluates its performance. Methods: In May 2011, ten male volunteers (age range: 29 to 53 years, mean: 37 years) underwent DW-MRI of the upper abdomen on 1.5T and 3.0T magnetic resonance scanners. Regions of interest in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla were delineated independently by two readers. DNNs were trained for IVIM model fitting using these data; results were compared to least-squares and Bayesian approaches to IVIM fitting. Intraclass Correlation Coefficients (ICC) were used to assess consistency of measurements between readers. Intersubject variability was evaluated using Coefficients of Variation (CV). The fitting error was calculated based on simulated data and the average fitting time of each method was recorded. Results: DNNs were trained successfully for IVIM parameter estimation. This approach was associated with high consistency between the two readers (ICCs between 50 and 97%), low intersubject variability of estimated parameter values (CVs between 9.2 and 28.4), and the lowest error when compared with least-squares and Bayesian approaches. Fitting by DNNs was several orders of magnitude quicker than the other methods but the networks may need to be re-trained for different acquisition protocols or imaged anatomical regions. Conclusion: DNNs are recommended for accurate and robust IVIM model fitting to DW-MRI data. Suitable software is available at (1)

    Fuzzy Fibers: Uncertainty in dMRI Tractography

    Full text link
    Fiber tracking based on diffusion weighted Magnetic Resonance Imaging (dMRI) allows for noninvasive reconstruction of fiber bundles in the human brain. In this chapter, we discuss sources of error and uncertainty in this technique, and review strategies that afford a more reliable interpretation of the results. This includes methods for computing and rendering probabilistic tractograms, which estimate precision in the face of measurement noise and artifacts. However, we also address aspects that have received less attention so far, such as model selection, partial voluming, and the impact of parameters, both in preprocessing and in fiber tracking itself. We conclude by giving impulses for future research

    Deep learning-based parameter mapping for joint relaxation and diffusion tensor MR Fingerprinting

    Full text link
    Magnetic Resonance Fingerprinting (MRF) enables the simultaneous quantification of multiple properties of biological tissues. It relies on a pseudo-random acquisition and the matching of acquired signal evolutions to a precomputed dictionary. However, the dictionary is not scalable to higher-parametric spaces, limiting MRF to the simultaneous mapping of only a small number of parameters (proton density, T1 and T2 in general). Inspired by diffusion-weighted SSFP imaging, we present a proof-of-concept of a novel MRF sequence with embedded diffusion-encoding gradients along all three axes to efficiently encode orientational diffusion and T1 and T2 relaxation. We take advantage of a convolutional neural network (CNN) to reconstruct multiple quantitative maps from this single, highly undersampled acquisition. We bypass expensive dictionary matching by learning the implicit physical relationships between the spatiotemporal MRF data and the T1, T2 and diffusion tensor parameters. The predicted parameter maps and the derived scalar diffusion metrics agree well with state-of-the-art reference protocols. Orientational diffusion information is captured as seen from the estimated primary diffusion directions. In addition to this, the joint acquisition and reconstruction framework proves capable of preserving tissue abnormalities in multiple sclerosis lesions

    Data augmentation in Rician noise model and Bayesian Diffusion Tensor Imaging

    Full text link
    Mapping white matter tracts is an essential step towards understanding brain function. Diffusion Magnetic Resonance Imaging (dMRI) is the only noninvasive technique which can detect in vivo anisotropies in the 3-dimensional diffusion of water molecules, which correspond to nervous fibers in the living brain. In this process, spectral data from the displacement distribution of water molecules is collected by a magnetic resonance scanner. From the statistical point of view, inverting the Fourier transform from such sparse and noisy spectral measurements leads to a non-linear regression problem. Diffusion tensor imaging (DTI) is the simplest modeling approach postulating a Gaussian displacement distribution at each volume element (voxel). Typically the inference is based on a linearized log-normal regression model that can fit the spectral data at low frequencies. However such approximation fails to fit the high frequency measurements which contain information about the details of the displacement distribution but have a low signal to noise ratio. In this paper, we directly work with the Rice noise model and cover the full range of bb-values. Using data augmentation to represent the likelihood, we reduce the non-linear regression problem to the framework of generalized linear models. Then we construct a Bayesian hierarchical model in order to perform simultaneously estimation and regularization of the tensor field. Finally the Bayesian paradigm is implemented by using Markov chain Monte Carlo.Comment: 37 pages, 3 figure

    A non-invasive image based system for early diagnosis of prostate cancer.

    Get PDF
    Prostate cancer is the second most fatal cancer experienced by American males. The average American male has a 16.15% chance of developing prostate cancer, which is 8.38% higher than lung cancer, the second most likely cancer. The current in-vitro techniques that are based on analyzing a patients blood and urine have several limitations concerning their accuracy. In addition, the prostate Specific Antigen (PSA) blood-based test, has a high chance of false positive diagnosis, ranging from 28%-58%. Yet, biopsy remains the gold standard for the assessment of prostate cancer, but only as the last resort because of its invasive nature, high cost, and potential morbidity rates. The major limitation of the relatively small needle biopsy samples is the higher possibility of producing false positive diagnosis. Moreover, the visual inspection system (e.g., Gleason grading system) is not quantitative technique and different observers may classify a sample differently, leading to discrepancies in the diagnosis. As reported in the literature that the early detection of prostate cancer is a crucial step for decreasing prostate cancer related deaths. Thus, there is an urgent need for developing objective, non-invasive image based technology for early detection of prostate cancer. The objective of this dissertation is to develop a computer vision methodology, later translated into a clinically usable software tool, which can improve sensitivity and specificity of early prostate cancer diagnosis based on the well-known hypothesis that malignant tumors are will connected with the blood vessels than the benign tumors. Therefore, using either Diffusion Weighted Magnetic Resonance imaging (DW-MRI) or Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI), we will be able to interrelate the amount of blood in the detected prostate tumors by estimating either the Apparent Diffusion Coefficient (ADC) in the prostate with the malignancy of the prostate tumor or perfusion parameters. We intend to validate this hypothesis by demonstrating that automatic segmentation of the prostate from either DW-MRI or DCE-MRI after handling its local motion, provides discriminatory features for early prostate cancer diagnosis. The proposed CAD system consists of three majors components, the first two of which constitute new research contributions to a challenging computer vision problem. The three main components are: (1) A novel Shape-based segmentation approach to segment the prostate from either low contrast DW-MRI or DCE-MRI data; (2) A novel iso-contours-based non-rigid registration approach to ensure that we have voxel-on-voxel matches of all data which may be more difficult due to gross patient motion, transmitted respiratory effects, and intrinsic and transmitted pulsatile effects; and (3) Probabilistic models for the estimated diffusion and perfusion features for both malignant and benign tumors. Our results showed a 98% classification accuracy using Leave-One-Subject-Out (LOSO) approach based on the estimated ADC for 30 patients (12 patients diagnosed as malignant; 18 diagnosed as benign). These results show the promise of the proposed image-based diagnostic technique as a supplement to current technologies for diagnosing prostate cancer

    Automatic selection of multiple response functions for generalized Richardson-Lucy spherical deconvolution of diffusion MRI data

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica (Sinais e Imagens Médicas), Universidade de Lisboa, Faculdade de Ciências, 2021O processo de desenvolvimento do cérebro humano tem sido objeto de estudo desde há vários anos, levando a avanços significativos no que diz respeito à compreensão das suas diferentes fases e mecanismos. Visto que este desenvolvimento resulta de uma série de complexos processos dinâmicos e adaptativos, existe uma busca contínua de informação sobre a sua organização estrutural e funcional, bem como o seu processo de maturação. A ressonância magnética de difusão (dMRI) é uma técnica bastante completa no que diz respeito à análise do cérebro in vivo. Esta técnica é utilizada para realizar um mapeamento quantitativo, através da aplicação de modelos como o modelo de difusão tensorial (DTI). Estes modelos fornecem medidas que caracterizam o cérebro, tais como a anisotropia fraccional (FA) e difusividade média (MD), permitindo assim a quantificação de microestruturas e consequentemente a reconstrução de feixes de substância branca (WM) que ligam diferentes regiões cerebrais. Dadas as suas propriedades de difusão anisotrópica e a sua constituição fibrosa, as fibras de WM têm sido amplamente estudadas através da dMRI. Além disso, a tractografia tornou-se a abordagem padrão no que diz respeito à avaliação da conectividade cerebral usando dados de dMRI. Os métodos de desconvolução esférica (SD) estão entre os mais utilizados para quantificar a distribuição da orientação das fibras (FOD) a partir de dados dMRI do cérebro, sendo que a forma mais comum de o fazer é com desconvolução esférica limitada (CSD). A ideia original da CSD baseia-se no facto de podermos escolher uma função de resposta (RF) representativa de um determinado tecido presente no cérebro e aplicar a SD para resolver o problema de cruzamento de fibras que o modelo de DTI não consegue resolver. Uma vez que o cérebro possui uma complexa organização de tecidos, múltiplos tecidos devem ser considerados. Não é apropriado usar uma RF de WM em todo o cérebro, pois isso pode levar a reconstruções imprecisas da orientação das fibras e a um mau desempenho durante o processo de tractografia. Ao ter em conta múltiplos tecidos, as propriedades da substância cinzenta (GM) e do líquido céfalo-raquidiano (CSF) podem ser quantificadas, e os efeitos de volume parcial (PVE) podem ser reduzidos. Nos últimos anos, tem sido possível adquirir dados “multi-camada” mais complexos e de elevada resolução, mesmo em recém-nascidos, o que permitiu melhorar a técnica de CSD. Consequentemente, esta aquisição também vai melhorar a reconstrução da FOD no cérebro adulto, pois considera os PVE entre diferentes tipos de tecidos. No cérebro neonatal existem algumas diferenças, pois este é constituído por WM em diferentes fases de maturação, e a GM possui características diferentes em comparação com um cérebro adulto. A possibilidade de distinguir diferentes tipos de fibras apenas com base nas suas características microestruturais deve-se às diferenças presentes no cérebro enquanto este se encontra numa fase de desenvolvimento. Em cérebros adultos, é menos provável conseguir observar tais diferenças. Uma das melhores formas de compreender e estudar estes processos de desenvolvimento cerebral é através do estudo do cérebro de neonatais. Como seria de esperar, o cérebro de um recém-nascido não se encontra completamente maturado, sofrendo por isso diversas alterações até estar totalmente desenvolvido. Estas mudanças vão desde o aumento do tamanho do cérebro a alterações ao nível vascular, levando consequentemente a uma alteração dos processos de cognitivos. Em última análise, a aplicação de CSD a dados de “multi-camada” leva a uma extração mais precisa da FOD que por sua vez irá melhorar o processo de tractografia e levará, consequentemente, a uma melhor compreensão do cérebro humano e do seu desenvolvimento, particularmente se aplicada em recém-nascidos e comparada com adultos. O método Generalized Richardson-Lucy (GRL) pode superar os problemas encontrados pela CSD através da realização de SD robusta, suprimindo picos imprecisos na FOD em dados “multi-camada” de dMRI. Este método pode definir múltiplos tecidos que irão aumentar a precisão da estimativa da FOD. No entanto, no método GRL, as três classes de tecidos representadas (WM, GM e CSF) são pré-definidas com valores FA e MD retirados da literatura. Este estudo consistiu em desenvolver um método que determina automaticamente o número de classes (tecidos) necessárias para aplicar corretamente GRL no cérebro com dados “multi-camada”, utilizando para isso os seus valores de FA e MD. O objetivo é aplicar corretamente o método de GRL no cérebro com as classes obtidas, de forma avaliar se existe uma melhoria no processo de estimação das FOD e por sua vez no processo de tractografia. Os dados utilizados neste trabalho consistem em dados de dMRI de dez neonatais e dez adultos, fornecidos pelo Developing Human Connectome Project (dHCP) e pelo Human Connectome Project (HCP), respetivamente. Estes dados já se encontravam num formato pré-processado, pelo que não foi necessário realizar qualquer etapa adicional neste sentido. A primeira parte do estudo consistiu no desenvolvimento do método de deteção automática do número de tipos de tecidos no cérebro. Para isso, todos os dados foram processados no ExploreDTI, um programa de interface gráfica para dados de dMRI e que permite, por exemplo, a realização de tractografia. Este programa foi também usado para extrair os valores de FA e MD dos dados de dMRI dos cérebros dos neonatais e dos adultos, de modo a analisar a sua distribuição de valores por todo o cérebro através de histogramas. De seguida foi aplicado um gaussian mixture model (GMM) aos histogramas de FA e MD, utilizando o MATLAB R2018a, de forma a decompor os dados em classes. Depois de aplicar o GMM aos dados, foi determinado o número ideal de Gaussianas para os mapas de FA e MD. Para isso foi calculado o Bayesian information criterion (BIC) de cada modelo, em que cada um destes se caracteriza por um certo número de Gaussianas. De seguida, foi calculada a probabilidade do valor de cada voxel pertencer a uma das classes escolhidas de FA e MD, atribuiu-se assim uma classe a cada voxel. Posteriormente selecionaram-se as três melhores combinações de FA e MD de cada classe com base na frequência de ocorrência de cada combinação, sendo que cada classe foi definida pela média e desvio padrão das respetivas Gaussianas. Por fim, foram criados mapas espaciais do cérebro com as classes finais, utilizando o MATLAB R2018a. Na segunda parte do estudo aplicou-se o método GRL aos dados, de forma a estimar a RF de cada um dos tecidos que foram selecionados na primeira parte. Estas duas partes do trabalho integram a nossa abordagem, sendo esta designada por "GRL-auto". No método GRL, a RF da GM e do CSF é baseada em valores de FA e MD retirados da literatura, enquanto que o método GRL-auto desenvolvido neste estudo estima esses valores através da seleção automática dos valores de FA e MD que são característicos de cada um destes tecidos. Obtiveram-se os mapas das frações de sinal da WM, GM, e CSF e foram feitas comparações entre o método GRL e GRL-auto. As FOD da WM obtidas com ambos os métodos foram comparadas entre si em regiões de cruzamento de fibras, tanto para neonatais como para os adultos. Por fim, para ambos os métodos, procedeu-se à tractografia em neonatais. Os resultados indicam que, tanto para recém-nascidos como para adultos, existe consistência em relação aos valores de FA e MD e ao seu respetivo número de classes selecionadas. Além disso, conseguem ser observadas diferentes fases de maturação de WM nos neonatais, mas também algumas imperfeições à volta dos ventrículos e regiões onde ocorre cruzamento de fibras. Todos os mapas espaciais de FA e MD fizeram sentido anatomicamente, sendo consistentes quer nos neonatais quer nos adultos, demonstrando assim a eficácia deste método. Os mapas de sinal das frações de WM, GM, e CSF apresentaram valores plausíveis e concordância com a anatomia esperada, para além de consistência tanto nos recém-nascidos como nos adultos. Os mapas de frações de sinal dos adultos praticamente não apresentaram diferenças entre os dois métodos. No entanto, os neonatais mostraram algumas diferenças notáveis, particularmente nos mapas de GM e CSF. Os resultados relativos às FODs não mostraram diferenças significativas no que diz respeito aos adultos. No entanto, para os neonatais, o método GRL-auto estimou FODs de elevada qualidade na WM, em comparação com o método GRL. Além disso, o método GRL-auto detetou mais picos plausíveis em regiões de cruzamento de fibras par além de uma diferença angular maior entre os principais picos das FOD, em comparação com o método GRL. Por fim, este método demonstrou uma melhoria no processo de tractografia, o que por sua vez levará a uma melhor compreensão do cérebro humano e do seu desenvolvimento. Conclui-se assim que o método desenvolvido neste estudo é eficiente e mostra consistência no que diz respeito ao processo de seleção automática do número de tecidos necessários para efetuar CSD no cérebro. Observou-se uma melhoria na tractografia das fibras, o que permitirá uma melhor compreensão da maturação do cérebro bem como das conexões entre as diversas regiões, tendo-se, assim, cumprido o objetivo principal deste trabalho.To understand the development of the human brain, more detailed information is required regarding the structural and functional cerebral organization and maturation. This development is the product of a complex series of dynamic and adaptive processes, and one of the best ways to understand it is through the study of the neonatal brain. The neonatal brain is not fully developed as it would be expected, so it goes through many changes regarding brain size, vasculature, and cognition. Constrained spherical deconvolution (CSD) is a widely used approach to quantify the fiber orientation distribution (FOD) from diffusion magnetic resonance imaging (dMRI) data of the brain, which allows the reconstruction of more complex white matter (WM) bundles in vivo, including in neonates. However, this method estimates the response function (RF) based on the model of a single fiber population and uses it to try to reconstruct the local WM orientations. Since the brain has a complex tissue organization, multiple tissues must be considered. It is not appropriate to use a WM RF throughout the whole brain because this can lead to spurious fiber orientation reconstructions and bad performance during fiber tractography. By accounting for multiple tissues, properties of grey matter (GM) and cerebrospinal fluid (CSF) can be captured, and partial volume effects (PVE) reduced. The acquisition of more comprehensive high-resolution multi-shell dMRI data offers opportunities to take into account multiple tissue types. Ultimately, these improve fiber tractography and consequently lead to a better understanding of the human brain and its development. The generalized Richardson-Lucy (GRL) method can overcome these challenges by performing robust spherical deconvolution (SD) and suppress spurious FOD peaks on multi-shell dMRI data due to PVE. However, in the GRL method, three tissue classes are typically pre-defined to represent WM, GM, and CSF, using fractional anisotropy (FA) and mean diffusivity (MD) values taken from literature. These two metrics are derived from the diffusion tensor model (DTI), with FA measuring how anisotropic is the tensor in each voxel and MD measuring the average of the diffusion rate at each voxel. This study aims to develop a method that automatically determines the number of tissue types (classes) that are needed to properly perform GRL in each analyzed brain dataset. The dataset used in this work consists of ten neonates and ten adults from the Developing Human Connectome Project (dHCP) and the Human Connectome Project (HCP), respectively. The first part of this study consisted of developing a method for the automatic detection of the number of tissue types in the brain, by applying a gaussian mixture model (GMM) and the Bayesian information criterion (BIC) to automatically extract the number of tissue classes from the histogram of dMRI properties. In the second part, the GRL method was applied to the data to estimate the RF of each tissue that was automatically chosen in the first part, and therefore calculate the FOD and perform fiber tractography. This approach was designated by “GRL-auto”. Lastly, a comparison between the basic GRL formulation and GRL-auto was done. Since GRL uses predefined values calibrated on HCP data, it becomes clear that small differences were expected on such dataset, whereas on dHCP larger differences were expected. Our analysis showed that our method automatically identified three classes in the FA histogram and two classes in the MD histogram when using HCP and dHCP data. Therefore, these results demonstrated consistency regarding the FA and MD values and their respective number of selected classes, for both datasets. Furthermore, different stages of WM maturation were detected in the dHCP data, but also some imperfections around the ventricles and crossing fibers areas. All FA and MD spatial maps were in line with anatomical correspondence and were consistent across all neonatal and adult subjects, demonstrating the efficiency of this method. The values of the WM, GM, and CSF fraction maps were plausible, in line with the expected anatomy, and looked consistent on both HCP and dHCP datasets. The signal fraction maps determined with the HCP data showed almost no difference between GRL and GRL-auto. However, in the dHCP data, we observed notable differences, particularly in the GM and CSF maps. Regarding the FOD estimation, our results showed no difference in the HCP data. Nevertheless, for the dHCP data, GRL-auto estimated high-quality FODs in WM, and detected more peaks in crossing fiber regions and a bigger angular difference between the main FOD peaks, as compared to GRL. Lastly, we showed that GRL-auto led to improvements in fiber tractography, which will likely support gaining a better understanding of the human brain and its development. Therefore, we can conclude that the method developed in this study is efficient and consistent in the automatic selection of the number of tissues needed to properly perform GRL in a brain, given multi-shell data, which was the main goal
    corecore