3 research outputs found

    Non-negative Matrix Factorization via Archetypal Analysis

    Full text link
    Given a collection of data points, non-negative matrix factorization (NMF) suggests to express them as convex combinations of a small set of `archetypes' with non-negative entries. This decomposition is unique only if the true archetypes are non-negative and sufficiently sparse (or the weights are sufficiently sparse), a regime that is captured by the separability condition and its generalizations. In this paper, we study an approach to NMF that can be traced back to the work of Cutler and Breiman (1994) and does not require the data to be separable, while providing a generally unique decomposition. We optimize the trade-off between two objectives: we minimize the distance of the data points from the convex envelope of the archetypes (which can be interpreted as an empirical risk), while minimizing the distance of the archetypes from the convex envelope of the data (which can be interpreted as a data-dependent regularization). The archetypal analysis method of (Cutler, Breiman, 1994) is recovered as the limiting case in which the last term is given infinite weight. We introduce a `uniqueness condition' on the data which is necessary for exactly recovering the archetypes from noiseless data. We prove that, under uniqueness (plus additional regularity conditions on the geometry of the archetypes), our estimator is robust. While our approach requires solving a non-convex optimization problem, we find that standard optimization methods succeed in finding good solutions both for real and synthetic data.Comment: 39 pages; 11 pdf figure

    Near-Convex Archetypal Analysis

    Full text link
    Nonnegative matrix factorization (NMF) is a widely used linear dimensionality reduction technique for nonnegative data. NMF requires that each data point is approximated by a convex combination of basis elements. Archetypal analysis (AA), also referred to as convex NMF, is a well-known NMF variant imposing that the basis elements are themselves convex combinations of the data points. AA has the advantage to be more interpretable than NMF because the basis elements are directly constructed from the data points. However, it usually suffers from a high data fitting error because the basis elements are constrained to be contained in the convex cone of the data points. In this letter, we introduce near-convex archetypal analysis (NCAA) which combines the advantages of both AA and NMF. As for AA, the basis vectors are required to be linear combinations of the data points and hence are easily interpretable. As for NMF, the additional flexibility in choosing the basis elements allows NCAA to have a low data fitting error. We show that NCAA compares favorably with a state-of-the-art minimum-volume NMF method on synthetic datasets and on a real-world hyperspectral image.Comment: 10 pages, 3 figure

    State Aggregation Learning from Markov Transition Data

    Full text link
    State aggregation is a popular model reduction method rooted in optimal control. It reduces the complexity of engineering systems by mapping the system's states into a small number of meta-states. The choice of aggregation map often depends on the data analysts' knowledge and is largely ad hoc. In this paper, we propose a tractable algorithm that estimates the probabilistic aggregation map from the system's trajectory. We adopt a soft-aggregation model, where each meta-state has a signature raw state, called an anchor state. This model includes several common state aggregation models as special cases. Our proposed method is a simple two-step algorithm: The first step is spectral decomposition of empirical transition matrix, and the second step conducts a linear transformation of singular vectors to find their approximate convex hull. It outputs the aggregation distributions and disaggregation distributions for each meta-state in explicit forms, which are not obtainable by classical spectral methods. On the theoretical side, we prove sharp error bounds for estimating the aggregation and disaggregation distributions and for identifying anchor states. The analysis relies on a new entry-wise deviation bound for singular vectors of the empirical transition matrix of a Markov process, which is of independent interest and cannot be deduced from existing literature. The application of our method to Manhattan traffic data successfully generates a data-driven state aggregation map with nice interpretations.Comment: Accepted to NeurIPS, 201
    corecore